| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.lof | 
 LOF family of outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | 
 Meta outlier detection algorithms: external scores, score rescaling. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.trivial | 
 Trivial outlier detection algorithms: no outliers, all outliers, label outliers. 
 | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | 
 Greedy ensembles for outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.histogram | 
 Functionality for the evaluation of algorithms using histograms. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.outlier | 
 Evaluate an outlier score using a misclassification based cost model. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.roc | 
 Evaluation of rankings using ROC AUC (Receiver Operation Characteristics - Area Under Curve) 
 | 
| de.lmu.ifi.dbs.elki.result | 
 Result types, representation and handling 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | 
 Scaling of Outlier scores, that require a statistical analysis of the occurring values 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.outlier | 
 Visualizers for outlier scores based on 2D projections. 
 | 
| tutorial.outlier | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
ABOD.getFastRanking(Relation<V> relation)
Main part of the algorithm. 
 | 
OutlierResult | 
ABOD.getRanking(Relation<V> relation)
Main part of the algorithm. 
 | 
OutlierResult | 
OutlierAlgorithm.run(Database database)  | 
OutlierResult | 
ODIN.run(Database database,
   Relation<O> relation)
Run the ODIN algorithm 
 | 
OutlierResult | 
KNNOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
OPTICSOF.run(Database database,
   Relation<O> relation)
Perform OPTICS-based outlier detection. 
 | 
OutlierResult | 
AbstractDBOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
HilOut.run(Database database,
   Relation<O> relation)  | 
OutlierResult | 
KNNWeightOutlier.run(Database database,
   Relation<O> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
AggarwalYuEvolutionary.run(Database database,
   Relation<V> relation)
Performs the evolutionary algorithm on the given database. 
 | 
OutlierResult | 
ReferenceBasedOutlierDetection.run(Database database,
   Relation<V> relation)
Run the algorithm on the given relation. 
 | 
OutlierResult | 
SimpleCOP.run(Database database,
   Relation<V> data)  | 
OutlierResult | 
EMOutlier.run(Database database,
   Relation<V> relation)
Runs the algorithm in the timed evaluation part. 
 | 
OutlierResult | 
ABOD.run(Relation<V> relation)
Run ABOD on the data set. 
 | 
OutlierResult | 
COP.run(Relation<V> relation)
Process a single relation. 
 | 
OutlierResult | 
GaussianUniformMixture.run(Relation<V> relation)
Run the algorithm 
 | 
OutlierResult | 
AggarwalYuNaive.run(Relation<V> relation)
Run the algorithm on the given relation. 
 | 
OutlierResult | 
GaussianModel.run(Relation<V> relation)
Run the algorithm 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private OutlierResult | 
FlexibleLOF.LOFResult.result
The result of the run of the  
FlexibleLOF algorithm. | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
FlexibleLOF.LOFResult.getResult()
Get the outlier result. 
 | 
OutlierResult | 
FlexibleLOF.run(Database database,
   Relation<O> relation)
Performs the Generalized LOF algorithm on the given database by calling
  
FlexibleLOF.doRunInTime(de.lmu.ifi.dbs.elki.database.ids.DBIDs, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O, D>, de.lmu.ifi.dbs.elki.database.query.knn.KNNQuery<O, D>, de.lmu.ifi.dbs.elki.logging.progress.StepProgress). | 
OutlierResult | 
OnlineLOF.run(Database database,
   Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database by
 calling  
#doRunInTime(Database) and adds a OnlineLOF.LOFKNNListener to
 the preprocessors. | 
OutlierResult | 
LOCI.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
LDF.run(Database database,
   Relation<O> relation)
Run the naive kernel density LOF algorithm. 
 | 
OutlierResult | 
SimplifiedLOF.run(Database database,
   Relation<O> relation)
Run the Simple LOF algorithm. 
 | 
OutlierResult | 
LoOP.run(Database database,
   Relation<O> relation)
Performs the LoOP algorithm on the given database. 
 | 
OutlierResult | 
INFLO.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
ALOCI.run(Database database,
   Relation<O> relation)  | 
OutlierResult | 
LOF.run(Database database,
   Relation<O> relation)
Performs the Generalized LOF_SCORE algorithm on the given database. 
 | 
OutlierResult | 
LDOF.run(Database database,
   Relation<O> relation)
Run the algorithm 
 | 
OutlierResult | 
SimpleKernelDensityLOF.run(Database database,
   Relation<O> relation)
Run the naive kernel density LOF algorithm. 
 | 
| Constructor and Description | 
|---|
FlexibleLOF.LOFResult(OutlierResult result,
                     KNNQuery<O,D> kNNRefer,
                     KNNQuery<O,D> kNNReach,
                     WritableDoubleDataStore lrds,
                     WritableDoubleDataStore lofs)
Encapsulates information generated during a run of the
  
FlexibleLOF algorithm. | 
| Modifier and Type | Method and Description | 
|---|---|
private OutlierResult | 
RescaleMetaOutlierAlgorithm.getOutlierResult(Result result)
Find an OutlierResult to work with. 
 | 
OutlierResult | 
SimpleOutlierEnsemble.run(Database database)  | 
OutlierResult | 
RescaleMetaOutlierAlgorithm.run(Database database)  | 
OutlierResult | 
ExternalDoubleOutlierScore.run(Database database,
   Relation<?> relation)
Run the algorithm. 
 | 
OutlierResult | 
FeatureBagging.run(Database database,
   Relation<NumberVector<?>> relation)
Run the algorithm on a data set. 
 | 
OutlierResult | 
HiCS.run(Relation<V> relation)
Perform HiCS on a given database. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
TrimmedMeanApproach.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector<?>> relation)
Run the algorithm. 
 | 
OutlierResult | 
CTLuZTestOutlier.run(Database database,
   Relation<N> nrel,
   Relation<? extends NumberVector<?>> relation)
Main method. 
 | 
OutlierResult | 
SOF.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)
The main run method 
 | 
OutlierResult | 
SLOM.run(Database database,
   Relation<N> spatial,
   Relation<O> relation)  | 
OutlierResult | 
CTLuGLSBackwardSearchAlgorithm.run(Database database,
   Relation<V> relationx,
   Relation<? extends NumberVector<?>> relationy)
Run the algorithm 
 | 
OutlierResult | 
CTLuMoranScatterplotOutlier.run(Relation<N> nrel,
   Relation<? extends NumberVector<?>> relation)
Main method. 
 | 
OutlierResult | 
CTLuMedianAlgorithm.run(Relation<N> nrel,
   Relation<? extends NumberVector<?>> relation)
Main method. 
 | 
OutlierResult | 
CTLuRandomWalkEC.run(Relation<N> spatial,
   Relation<? extends NumberVector<?>> relation)
Run the algorithm. 
 | 
OutlierResult | 
CTLuScatterplotOutlier.run(Relation<N> nrel,
   Relation<? extends NumberVector<?>> relation)
Main method. 
 | 
OutlierResult | 
CTLuMedianMultipleAttributes.run(Relation<N> spatial,
   Relation<O> attributes)
Run the algorithm 
 | 
OutlierResult | 
CTLuMeanMultipleAttributes.run(Relation<N> spatial,
   Relation<O> attributes)  | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
OutRankS1.run(Database database)  | 
OutlierResult | 
SOD.run(Relation<V> relation)
Performs the SOD algorithm on the given database. 
 | 
OutlierResult | 
OUTRES.run(Relation<V> relation)
Main loop for OUTRES 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
ByLabelOutlier.run(Database database)  | 
OutlierResult | 
TrivialGeneratedOutlier.run(Database database)  | 
OutlierResult | 
ByLabelOutlier.run(Relation<?> relation)
Run the algorithm 
 | 
OutlierResult | 
TrivialNoOutlier.run(Relation<?> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
TrivialAllOutlier.run(Relation<?> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
TrivialAverageCoordinateOutlier.run(Relation<? extends NumberVector<?>> relation)
Run the actual algorithm. 
 | 
OutlierResult | 
TrivialGeneratedOutlier.run(Relation<Model> models,
   Relation<NumberVector<?>> vecs,
   Relation<?> labels)
Run the algorithm 
 | 
| Modifier and Type | Method and Description | 
|---|---|
(package private) void | 
ComputeKNNOutlierScores.writeResult(PrintStream out,
           DBIDs ids,
           OutlierResult result,
           ScalingFunction scaling,
           String label)
Write a single output line. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
HistogramResult<DoubleVector> | 
ComputeOutlierHistogram.evaluateOutlierResult(Database database,
                     OutlierResult or)
Evaluate a single outlier result as histogram. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private OutlierROCCurve.ROCResult | 
OutlierROCCurve.computeROCResult(int size,
                SetDBIDs positiveids,
                OutlierResult or)  | 
protected JudgeOutlierScores.ScoreResult | 
JudgeOutlierScores.computeScore(DBIDs ids,
            DBIDs outlierIds,
            OutlierResult or)
Evaluate a single outlier score result. 
 | 
private OutlierSmROCCurve.SmROCResult | 
OutlierSmROCCurve.computeSmROCResult(SetDBIDs positiveids,
                  OutlierResult or)  | 
private Clustering<Model> | 
OutlierThresholdClustering.split(OutlierResult or)  | 
| Constructor and Description | 
|---|
ROC.OutlierScoreAdapter(OutlierResult o)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static List<OutlierResult> | 
ResultUtil.getOutlierResults(Result r)
Collect all outlier results from a Result 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
KMLOutputHandler.writeKMLData(XMLStreamWriter xmlw,
            OutlierResult outlierResult,
            Database database)  | 
| Modifier and Type | Method and Description | 
|---|---|
private static double | 
MultiplicativeInverseScaling.getScaleValue(OutlierResult or)
Compute the scaling value in a linear scan over the annotation. 
 | 
void | 
MinusLogGammaScaling.prepare(OutlierResult or)  | 
void | 
SqrtStandardDeviationScaling.prepare(OutlierResult or)  | 
void | 
OutlierGammaScaling.prepare(OutlierResult or)  | 
void | 
OutlierSqrtScaling.prepare(OutlierResult or)  | 
void | 
MultiplicativeInverseScaling.prepare(OutlierResult or)  | 
void | 
MinusLogStandardDeviationScaling.prepare(OutlierResult or)  | 
void | 
MixtureModelOutlierScalingFunction.prepare(OutlierResult or)  | 
void | 
OutlierScalingFunction.prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
 called. 
 | 
void | 
StandardDeviationScaling.prepare(OutlierResult or)  | 
void | 
TopKOutlierScaling.prepare(OutlierResult or)  | 
void | 
OutlierMinusLogScaling.prepare(OutlierResult or)  | 
void | 
HeDESNormalizationOutlierScaling.prepare(OutlierResult or)  | 
void | 
SigmoidOutlierScalingFunction.prepare(OutlierResult or)  | 
void | 
OutlierLinearScaling.prepare(OutlierResult or)  | 
void | 
RankingPseudoOutlierScaling.prepare(OutlierResult or)  | 
| Modifier and Type | Field and Description | 
|---|---|
protected OutlierResult | 
BubbleVisualization.Instance.result
The outlier result to visualize 
 | 
| Modifier and Type | Method and Description | 
|---|---|
OutlierResult | 
ODIN.run(Database database,
   Relation<O> relation)
Run the ODIN algorithm
 
 Tutorial note: the signature of this method depends on the types
 that we requested in the  
ODIN.getInputTypeRestriction() method. | 
OutlierResult | 
DistanceStddevOutlier.run(Database database,
   Relation<O> relation)
Run the outlier detection algorithm 
 |