
@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek", title="Interpreting and Unifying Outlier Scores", booktitle="Proc. 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011", url="http://siam.omnibooksonline.com/2011datamining/data/papers/018.pdf") public class MinusLogGammaScaling extends OutlierGammaScaling
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
MinusLogGammaScaling.Parameterizer
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) double | 
max
Maximum value seen 
 | 
(package private) double | 
mlogmax
Minimum value (after log step, so maximum again) 
 | 
atmean, k, meta, normalize, NORMALIZE_ID, theta| Constructor and Description | 
|---|
MinusLogGammaScaling()
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
 called. 
 | 
protected double | 
preScale(double score)
Normalize data if necessary. 
 | 
getMax, getMin, getScaleddouble max
double mlogmax
protected double preScale(double score)
OutlierGammaScalingMinusLogGammaScaling!preScale in class OutlierGammaScalingscore - Original scorepublic void prepare(OutlierResult or)
OutlierScalingFunctionprepare in interface OutlierScalingFunctionprepare in class OutlierGammaScalingor - Outlier result to use