
public class ComputeOutlierHistogram extends Object implements Evaluator
-hist.positive specifies the class label of "positive"
 hits.| Modifier and Type | Class and Description | 
|---|---|
static class  | 
ComputeOutlierHistogram.Parameterizer
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private int | 
bins
Number of bins 
 | 
static OptionID | 
BINS_ID
number of bins for the histogram
 
 Default value:  
EuclideanDistanceFunction
 
 
 Key: -comphist.bins
  | 
static OptionID | 
POSITIVE_CLASS_NAME_ID
The object pattern to identify positive classes
 
 Key:  
-comphist.positive
  | 
private Pattern | 
positiveClassName
Stores the "positive" class. 
 | 
private ScalingFunction | 
scaling
Scaling function to use 
 | 
static OptionID | 
SCALING_ID
Parameter to specify a scaling function to use. 
 | 
private boolean | 
splitfreq
Flag to make split frequencies 
 | 
static OptionID | 
SPLITFREQ_ID
Flag to count frequencies of outliers and non-outliers separately
 
 Key:  
-histogram.splitfreq
  | 
| Constructor and Description | 
|---|
ComputeOutlierHistogram(Pattern positive_class_name,
                       int bins,
                       ScalingFunction scaling,
                       boolean splitfreq)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
HistogramResult<DoubleVector> | 
evaluateOutlierResult(Database database,
                     OutlierResult or)
Evaluate a single outlier result as histogram. 
 | 
void | 
processNewResult(HierarchicalResult baseResult,
                Result result)
Process a result. 
 | 
public static final OptionID POSITIVE_CLASS_NAME_ID
 Key: -comphist.positive
 
public static final OptionID BINS_ID
 Default value: EuclideanDistanceFunction
 
 Key: -comphist.bins
 
public static final OptionID SCALING_ID
 Key: -comphist.scaling
 
public static final OptionID SPLITFREQ_ID
 Key: -histogram.splitfreq
 
private Pattern positiveClassName
private int bins
private ScalingFunction scaling
private boolean splitfreq
public ComputeOutlierHistogram(Pattern positive_class_name, int bins, ScalingFunction scaling, boolean splitfreq)
positive_class_name - Class namebins - Binsscaling - Scalingsplitfreq - Scale inlier and outlier frequencies independentlypublic HistogramResult<DoubleVector> evaluateOutlierResult(Database database, OutlierResult or)
database - Database to processor - Outlier resultpublic void processNewResult(HierarchicalResult baseResult, Result result)
ResultProcessorprocessNewResult in interface ResultProcessorbaseResult - The base of the result tree.result - Newly added result subtree.