
@Reference(authors="J. Gao, P.-N. Tan", title="Converting Output Scores from Outlier Detection Algorithms into Probability Estimates", booktitle="Proc. Sixth International Conference on Data Mining, 2006. ICDM\'06.", url="http://dx.doi.org/10.1109/ICDM.2006.43") public class SigmoidOutlierScalingFunction extends Object implements OutlierScalingFunction
| Modifier and Type | Field and Description | 
|---|---|
(package private) double | 
Afinal
Sigmoid parameter 
 | 
(package private) double | 
Bfinal
Sigmoid parameter 
 | 
private static Logging | 
LOG
The logger for this class. 
 | 
| Constructor and Description | 
|---|
SigmoidOutlierScalingFunction()  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
getMax()
Get maximum resulting value. 
 | 
double | 
getMin()
Get minimum resulting value. 
 | 
double | 
getScaled(double value)
Transform a given value using the scaling function. 
 | 
private double[] | 
MStepLevenbergMarquardt(double a,
                       double b,
                       ArrayDBIDs ids,
                       BitSet t,
                       Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method. 
 | 
void | 
prepare(OutlierResult or)
Prepare is called once for each data set, before getScaled() will be
 called. 
 | 
private static final Logging LOG
double Afinal
double Bfinal
public void prepare(OutlierResult or)
OutlierScalingFunctionprepare in interface OutlierScalingFunctionor - Outlier result to useprivate final double[] MStepLevenbergMarquardt(double a,
                               double b,
                               ArrayDBIDs ids,
                               BitSet t,
                               Relation<Double> scores)
 Implementation based on:
 H.-T. Lin, C.-J. Lin, R. C. Weng:
 A Note on Platt’s Probabilistic Outputs for Support Vector Machines
 
a - A parameterb - B parameterids - Ids to processt - Bitset containing the assignmentscores - Scorespublic double getMax()
ScalingFunctionDouble.NaN or
 Double.POSITIVE_INFINITY.getMax in interface ScalingFunctionpublic double getMin()
ScalingFunctionDouble.NaN or
 Double.NEGATIVE_INFINITY.getMin in interface ScalingFunctionpublic double getScaled(double value)
ScalingFunctiongetScaled in interface ScalingFunctionvalue - Original value