Contact
Ludwig-Maximilians-Universität München
Lehrstuhl für Datenbanksysteme und Data Mining
Oettingenstraße 67
80538 München
Germany
Lehrstuhl für Datenbanksysteme und Data Mining
Oettingenstraße 67
80538 München
Germany
Room:
156
Phone:
+49-89-2180-9121
Fax:
+49-89-2180-9192
Email:
zellner@dbs.ifi.lmu.de
Research Interests:
- Process Mining
- Sequential Rule Mining
- Recommender Systems
- Anomaly Detection
- Concept Drift Detection
Teaching
- Softwareentwicklungspraktikum (WiSe 2024/2025)
- Softwareentwicklungspraktikum (SoSe 2024)
- Softwareentwicklungspraktikum (SoSe 2023)
- Softwareentwicklungspraktikum (WiSe 2022/2023)
- Oberseminar (SoSe 2022)
- Softwareentwicklungspraktikum (SoSe 2022)
- Softwareentwicklungspraktikum (WiSe 2021/2022)
- Oberseminar (SoSe 2021)
- Softwareentwicklungspraktikum (SoSe 2021)
- Softwareentwicklungspraktikum (WiSe 2020/2021)
- Master Seminar "Recent Developments in Process Mining" (SoSe 2020)
- Algorithmen und Datenstrukturen (SoSe 2020)
- Einführung in die Programmierung (WiSe 2019/2020)
- Softwareentwicklungspraktikum (SoSe 2019)
Supervised Theses:
- Anomaly Detection in an Object-Centric Setting
- On the Influence of HATC Parameters on Collusion Detection in Online Exams
- On the Conversion of Sequential Rules to Hasse Diagrams
- Examining Filter Bubbles over Time: A Sequential Rule Mining Approach
- Comparing Recommender Systems on a Successive-Item-Recommendation Task
- Dynamic Ranking of Sequential Rules Based on Discrete Gaps
- Dynamic Ranking of Sequential Rules Based on Continuous Gaps
- Analysing Parameter Impact and Quality Measures for Designated Rule Mining Algorithms
- On the Optimization of Partially-Ordered Sequential Rule Mining
- Utilising Sequential Rule Mining for Conformance Checking
- Comparing Types of Sequential Rule Mining for Recommendation Purposes
- Using Graph Similarity For Concept Drift Detection
- Discovering Frequent Subtraces with Gaps on Unstructured Processes
- k-Lines Clustering: Extending k-Means to Linearly Correlated Data
- Coalition-Based Ranking on Process Graphs
Possible Phases of a Thesis:
Publications:
- Xian, Z.-C., Zellner, L., Tavares, G., Seidl, T., (2024, September). CC-HIT: Creating Counterfactuals from High-Impact Transitions. In 2024 International Conference on Process Mining (ML4PM@ICPM). tbp
- Rauch, S., Frey, C. M. M., Zellner, L., Seidl, T., (2024, July). Process-Aware Bayesian Networks for Sequential Event Log Queries. In 2024 International Conference on Process Mining (ICPM). tbp
- Zellner, L., Rauch, S., Sontheim, J., & Seidl, T. (2024, May). On Diverse and Precise Recommendations for Small and Medium-Sized Enterprises. In 2024 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD).
- Maldonado, A.*, Zellner, L.*, Strickroth, S., & Seidl, T. (2023, October). Process Mining Techniques for Collusion Detection in Online Exams. In 2023 International Conference on Process Mining (EduPM@ICPM). (*Equal contribution)
- Zellner, L., Sontheim, J., Richter, F., Lindner, G., & Seidl, T. (2021, December). SCORER-Gap: Sequentially Correlated Rules for Event Recommendation Considering Gap Size. In 2021 International Conference on Data Mining Workshops (ICDMW) (pp. 925-934). IEEE.
- Zellner, L., Richter, F., Sontheim, J., Maldonado, A., & Seidl, T. (2020, October). Concept drift detection on streaming data with dynamic outlier aggregation. In International Conference on Process Mining (ICPMW) (pp. 206-217). Springer, Cham.
- Richter, F., Maldonado, A., Zellner, L., & Seidl, T. (2020, October). OTOSO: Online trace ordering for structural overviews. In International Conference on Process Mining (ICPMW) (pp. 218-229). Springer, Cham.
- Richter, F., Lu, Y., Zellner, L., Sontheim, J., & Seidl, T. (2020, October). TOAD: Trace Ordering for Anomaly Detection. In 2020 2nd International Conference on Process Mining (ICPM) (pp. 169-176). IEEE.
- Richter, F., Sontheim, J., Zellner, L., & Seidl, T. (2020, September). TADE: Stochastic Conformance Checking Using Temporal Activity Density Estimation. In International Conference on Business Process Management (pp. 220-236). Springer, Cham.
- Richter, F., Zellner, L., Sontheim, J., & Seidl, T. (2019, October). Model-Aware Clustering of Non-conforming Traces. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 193-200). Springer, Cham.
- Richter, F., Zellner, L., Azaiz, I., Winkel, D., & Seidl, T. (2019, September). LIProMa: label-independent process matching. In International Conference on Business Process Management (pp. 186-198). Springer, Cham.
- Jossé, Gregor, Matthias Schubert, and Ludwig Zellner. "Easyev: Monitoring and querying system for electric vehicle fleets using smart car data." International Symposium on Spatial and Temporal Databases. Springer, Cham, 2015.
Academic Service:
Reviewing for DSAA (DSAA'19), 2 x DAMI (DAMI'20), EDBT (EDBT'23), BTW (BTW'23), 2 x Data & Knowledge Engineering Journal (DATAK'23), ECAI (ECAI'23), 2 x ICDE (ICDE'24), ICDE (ICDE'25), BTW (BTW'25)