- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm
 
- 
Number of neighbors to retrieve.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
 
- 
K parameter
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex
 
- 
Number of neighbors to retrieve.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex.Parameterizer
 
- 
K parameter
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.AbstractKMeans
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMacQueen.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMediansLloyd.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
 
- 
The k parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
 
- 
K parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
 
- 
k parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier
 
- 
The target dimensionality.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP
 
- 
Number of neighbors to be considered.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
 
- 
Number of neighbors to be considered.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut
 
- 
Number of nearest neighbors
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut.Parameterizer
 
- 
Neighborhood size
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
 
- 
The parameter k
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
 
- 
The neighborhood size to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF.Parameterizer
 
- 
The neighborhood size to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
 
- 
The neighborhood size to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimplifiedLOF
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimplifiedLOF.Parameterizer
 
- 
The neighborhood size to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging
 
- 
The parameters k for LOF.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.meta.FeatureBagging.Parameterizer
 
- 
The neighborhood size to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN
 
- 
Number of neighbors for kNN graph.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN.Parameterizer
 
- 
Number of nearest neighbors to use.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection.Parameterizer
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP
 
- 
Number of neighbors to be considered.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP.Parameterizer
 
- 
Number of neighbors to be considered.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm
 
- 
Parameter k - neighborhood size
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
 
- 
Parameter k - neighborhood size
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
 
- 
Parameter for kNN.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory
 
- 
parameter k
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
 
- 
Parameter k
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK
 
- 
The parameter k - the number of neighbors to retrieve.
 
- k - Variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK.Parameterizer
 
- 
Neighborhood size.
 
- k - Variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists
 
- 
Number of neighbors to precompute.
 
- k - Variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists.Parameterizer
 
- 
Number of neighbors to precompute.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DistanceDBIDPairKNNList
 
- 
The value of k this was materialized for.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceDBIDPairKNNList
 
- 
The value of k this was materialized for.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceKNNSubList
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList
 
- 
Parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNHeap
 
- 
k for this heap.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNList
 
- 
The k value this list was generated for.
 
- k - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNListHeap
 
- 
The k value this list was generated for.
 
- k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter
 
- 
Holds the desired cardinality of the subset of attributes selected for
 projection.
 
- k - Variable in class de.lmu.ifi.dbs.elki.datasource.filter.transform.NumberVectorRandomFeatureSelectionFilter.Parameterizer
 
- 
Number of attributes to select.
 
- k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
 
- 
Value for k
 
- k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
 
- 
The value of k
 
- k - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Parameterizer
 
- 
The value of k
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.AbstractHashFunctionFamily
 
- 
The number of projections to use for each hash function.
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.lsh.hashfamilies.AbstractHashFunctionFamily.Parameterizer
 
- 
The number of projections to use for each hash function.
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory.Parameterizer
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor
 
- 
The query k value.
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
-  
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
 
- 
Query k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory.Parameterizer
 
- 
 
- k - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex
 
- 
Holds the value of parameter k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.GammaDistribution
 
- 
Alpha == k
 
- k - Variable in class de.lmu.ifi.dbs.elki.math.statistics.distribution.LogGammaDistribution
 
- 
Alpha == k.
 
- k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.OutlierGammaScaling
 
- 
Gamma parameter k
 
- k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
 
- 
Number of outliers to keep.
 
- k - Variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling.Parameterizer
 
-  
 
- k - Variable in class tutorial.clustering.SameSizeKMeansAlgorithm.Parameterizer
 
- 
k Parameter.
 
- k - Variable in class tutorial.outlier.DistanceStddevOutlier
 
- 
Number of neighbors to get.
 
- k - Variable in class tutorial.outlier.DistanceStddevOutlier.Parameterizer
 
- 
Number of neighbors to get
 
- k - Variable in class tutorial.outlier.ODIN
 
- 
Number of neighbors for kNN graph.
 
- k - Variable in class tutorial.outlier.ODIN.Parameterizer
 
- 
Number of nearest neighbors to use.
 
- k_0 - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.ApproximationLine
 
- 
The start value for k.
 
- k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering
 
- 
 
- k_i - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
-  
 
- K_I_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
- 
Parameter to specify the multiplier for the initial number of seeds, must
 be an integer greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
 
- 
Parameter for the number of neighbors.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.benchmark.ValidateApproximativeKNNIndex.Parameterizer
 
- 
Parameter for the number of neighbors.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.AbstractProjectedClustering.Parameterizer
 
- 
Parameter to specify the number of clusters to find, must be an integer
 greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.correlation.HiCO
 
- 
Optional parameter to specify the number of nearest neighbors considered in
 the PCA, must be an integer greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.EM
 
- 
Parameter to specify the number of clusters to find, must be an integer
 greater than 0.
 
- K_ID - Static variable in interface de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeans
 
- 
Parameter to specify the number of clusters to find, must be an integer
 greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
 
- 
Parameter to specify the distance of the k-distant object to be assessed,
 must be an integer greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
 
- 
Parameter that specifies the k-nearest neighbors to be assigned, must be an
 integer greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
 
- 
Parameter for k, the number of neighbors used in kNN queries.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.AbstractAggarwalYuOutlier.Parameterizer
 
- 
OptionID for the target dimensionality.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.COP.Parameterizer
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its COP_SCORE, must be an integer greater than
 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.HilOut.Parameterizer
 
- 
Parameter to specify how many next neighbors should be used in the
 computation
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
 
- 
Parameter to specify the k nearest neighbor
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
 
- 
Parameter to specify the k nearest neighbor
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.INFLO
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its INFLO_SCORE. must be an integer greater than
 1.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
 
- 
Option ID for k
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDOF
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its LDOF_SCORE, must be an integer greater than 1.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LOF.Parameterizer
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its LOF_SCORE, must be an integer greater than
 1.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ODIN.Parameterizer
 
- 
Parameter for the number of nearest neighbors:
 
 
 -odin.k <int>
 
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection
 
- 
Parameter to specify the number of nearest neighbors of an object, to be
 considered for computing its REFOD_SCORE, must be an integer greater than
 1.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.SimpleCOP.Parameterizer
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its COP_SCORE, must be an integer greater than
 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuGLSBackwardSearchAlgorithm.Parameterizer
 
- 
Parameter to specify the k nearest neighbors
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.CTLuRandomWalkEC.Parameterizer
 
- 
Parameter to specify the number of neighbors.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.spatial.neighborhood.PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer
 
- 
Parameter k
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.statistics.AveragePrecisionAtK.Parameterizer
 
- 
Parameter k to compute the average precision at.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists.Parameterizer
 
- 
Parameter that specifies the number of neighbors to precompute.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
 
- 
OptionID for the "k" parameter.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.AbstractMaterializeKNNPreprocessor.Factory
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 materialized. must be an integer greater than 1.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
 
- 
Optional parameter to specify the number of nearest neighbors considered
 in the PCA, must be an integer greater than 0.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.preprocessed.preference.HiSCPreferenceVectorIndex.Factory
 
- 
The number of nearest neighbors considered to determine the preference
 vector.
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeFactory
 
- 
Parameter for k
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop.MkCopTreeFactory
 
- 
Parameter for k
 
- K_ID - Static variable in class de.lmu.ifi.dbs.elki.utilities.scaling.outlier.TopKOutlierScaling
 
- 
Parameter to specify the number of outliers to keep
 
 Key: -topk.k
 
 
- K_ID - Static variable in class tutorial.outlier.DistanceStddevOutlier.Parameterizer
 
- 
Option ID for parameterization.
 
- K_ID - Static variable in class tutorial.outlier.ODIN.Parameterizer
 
- 
Parameter for the number of nearest neighbors:
 
 
 -odin.k <int>
 
 
- k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeHeader
 
- 
The maximum number k of reverse kNN queries to be supported.
 
- k_max - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.MkTreeSettings
 
- 
Holds the maximum value of k to support.
 
- K_MAX_ID - Static variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnifiedFactory.Parameterizer
 
- 
Parameter specifying the maximal number k of reverse k nearest neighbors
 to be supported, must be an integer greater than 0.
 
- K_MULTIPLIER_ID - Static variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory.Parameterizer
 
- 
Option ID for querying a larger k.
 
- K_S_CRITICAL001 - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES
 
- 
Constant for Kolmogorov-Smirnov at alpha=0.01 (table value)
 
- kappa - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.subspaceproj.PreDeConSubspaceIndex
 
- 
The kappa value for generating the variance vector.
 
- KAPPA - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.EMClusterVisualization.Instance
 
-  
 
- kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
 
- 
 
- kcomp - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP.Parameterizer
 
- 
 
- KCOMP_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its LOOP_SCORE, must be an integer greater than 1.
 
- KDDCLIApplication - Class in de.lmu.ifi.dbs.elki.application
 
- 
Provides a KDDCLIApplication that can be used to perform any algorithm
 implementing 
Algorithm using any DatabaseConnection
 implementing 
DatabaseConnection.
 
 
- KDDCLIApplication(KDDTask) - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication
 
- 
Constructor.
 
- KDDCLIApplication.Parameterizer - Class in de.lmu.ifi.dbs.elki.application
 
- 
Parameterization class.
 
- KDDCLIApplication.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.application.KDDCLIApplication.Parameterizer
 
-  
 
- KDDTask - Class in de.lmu.ifi.dbs.elki
 
- 
Provides a KDDTask that can be used to perform any algorithm implementing
 
Algorithm using any DatabaseConnection implementing
 
DatabaseConnection.
 
 
- KDDTask(InputStep, AlgorithmStep, EvaluationStep, OutputStep, Collection<Pair<Object, Parameter<?>>>) - Constructor for class de.lmu.ifi.dbs.elki.KDDTask
 
- 
Constructor.
 
- KDDTask.Parameterizer - Class in de.lmu.ifi.dbs.elki
 
- 
Parameterization class.
 
- KDDTask.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.KDDTask.Parameterizer
 
-  
 
- kdist - Variable in class de.lmu.ifi.dbs.elki.database.ids.integer.DoubleDistanceIntegerDBIDKNNHeap
 
- 
Current maximum value.
 
- kdKNNSearch(int, int, int, O, DoubleDistanceKNNHeap, DBIDArrayIter, double) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeKNNQuery
 
- 
Perform a kNN search on the kd-tree.
 
- kdRangeSearch(int, int, int, O, ModifiableDoubleDistanceDBIDList, DBIDArrayIter, double) - Method in class de.lmu.ifi.dbs.elki.index.tree.spatial.kd.MinimalisticMemoryKDTree.KDTreeRangeQuery
 
- 
Perform a kNN search on the kd-tree.
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering
 
- 
Density estimation kernel.
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering.Parameterizer
 
- 
Kernel function.
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF
 
- 
Kernel density function
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
 
- 
Kernel density function parameter
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF
 
- 
Kernel density function
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
 
- 
Kernel density function parameter
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.OUTRES.KernelDensityEstimator
 
- 
Actual kernel in use
 
- kernel - Variable in class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
 
- 
The kernel matrix
 
- KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.EpanechnikovKernelDensityFunction
 
- 
Static instance.
 
- KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.GaussianKernelDensityFunction
 
- 
Static instance.
 
- KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.TriangularKernelDensityFunction
 
- 
Static instance.
 
- KERNEL - Static variable in class de.lmu.ifi.dbs.elki.math.statistics.UniformKernelDensityFunction
 
- 
Static instance.
 
- KERNEL_FUNCTION_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.ABOD
 
- 
Parameter for the kernel function.
 
- KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.NaiveMeanShiftClustering.Parameterizer
 
- 
Parameter for kernel function.
 
- KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LDF.Parameterizer
 
- 
Option ID for kernel.
 
- KERNEL_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.SimpleKernelDensityLOF.Parameterizer
 
- 
Option ID for kernel density LOF kernel.
 
- KernelDensityEstimator - Class in de.lmu.ifi.dbs.elki.math.statistics
 
- 
Estimate density given an array of points.
 
- KernelDensityEstimator(double[], double, double, KernelDensityFunction, int, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
 
- 
Initialize and execute kernel density estimation.
 
- KernelDensityEstimator(double[], KernelDensityFunction, double) - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.KernelDensityEstimator
 
- 
Process an array of data
 
- KernelDensityFunction - Interface in de.lmu.ifi.dbs.elki.math.statistics
 
- 
Inner function of a kernel density estimator.
 
- KernelMatrix - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
 
- 
Provides a class for storing the kernel matrix and several extraction methods
 for convenience.
 
- KernelMatrix(double[][]) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
 
- 
Wraps the matrixArray in a KernelMatrix
 
- KernelMatrix(PrimitiveSimilarityFunction<? super O, DoubleDistance>, Relation<? extends O>) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
 
- 
Deprecated.
ID mapping is not reliable!
 
 
- KernelMatrix(PrimitiveSimilarityFunction<? super O, DoubleDistance>, Relation<? extends O>, ArrayDBIDs) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
 
- 
Provides a new kernel matrix.
 
- KernelMatrix(Matrix) - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.KernelMatrix
 
- 
Makes a new kernel matrix from matrix (with data copying).
 
- key - Variable in class de.lmu.ifi.dbs.elki.logging.statistics.AbstractStatistic
 
- 
Key to report the statistic with.
 
- key(PlotItem, VisualizationTask) - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.LayerMap
 
- 
Helper function for building a key object
 
- KEY - Static variable in interface de.lmu.ifi.dbs.elki.visualization.style.StyleLibrary
 
- 
Key
 
- KEY_CAPTION - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
 
- 
CSS class for key captions.
 
- KEY_ENTRY - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
 
- 
CSS class for key entries.
 
- KEY_HIERLINE - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
 
- 
CSS class for hierarchy plot lines
 
- keymap - Variable in class de.lmu.ifi.dbs.elki.datasource.parser.TermFrequencyParser
 
- 
Map.
 
- keySet() - Method in class de.lmu.ifi.dbs.elki.visualization.gui.overview.RectangleArranger
 
- 
The item keys contained in the map.
 
- KeyVisualization - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
 
- 
Visualizer, displaying the key for a clustering.
 
- KeyVisualization() - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization
 
-  
 
- KeyVisualization.Instance - Class in de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj
 
- 
Instance
 
- KeyVisualization.Instance(VisualizationTask) - Constructor for class de.lmu.ifi.dbs.elki.visualization.visualizers.visunproj.KeyVisualization.Instance
 
- 
Constructor.
 
- KMeans - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Some constants and options shared among kmeans family algorithms.
 
- KMEANSBORDER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster.VoronoiVisualization
 
- 
Generic tags to indicate the type of element.
 
- KMeansInitialization<V> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Interface for initializing K-Means
 
- KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Provides the k-means algorithm, using Lloyd-style bulk iterations.
 
- KMeansLloyd(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd
 
- 
Constructor.
 
- KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMeansLloyd.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd.Parameterizer
 
-  
 
- KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Provides the k-means algorithm, using MacQueen style incremental updates.
 
- KMeansMacQueen(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMacQueen
 
- 
Constructor.
 
- KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMeansMacQueen.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansMacQueen.Parameterizer
 
-  
 
- KMeansModel<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.data.model
 
- 
Trivial subclass of the 
MeanModel that indicates the clustering to be
 produced by k-means (so the Voronoi cell visualization is sensible).
 
 
- KMeansModel(V) - Constructor for class de.lmu.ifi.dbs.elki.data.model.KMeansModel
 
- 
Constructor with mean.
 
- KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
K-Means++ initialization for k-means.
 
- KMeansPlusPlusInitialMeans(RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansPlusPlusInitialMeans
 
- 
Constructor.
 
- KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMeansPlusPlusInitialMeans.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansPlusPlusInitialMeans.Parameterizer
 
-  
 
- KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Provides the k-medians clustering algorithm, using Lloyd-style bulk
 iterations.
 
- KMediansLloyd(PrimitiveDistanceFunction<NumberVector<?>, D>, int, int, KMeansInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMediansLloyd
 
- 
Constructor.
 
- KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMediansLloyd.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMediansLloyd.Parameterizer
 
-  
 
- KMedoidsEM<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
 "Partitioning Around Medoids" approach.
 
- KMedoidsEM(PrimitiveDistanceFunction<? super V, D>, int, int, KMedoidsInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM
 
- 
Constructor.
 
- KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMedoidsEM.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsEM.Parameterizer
 
-  
 
- KMedoidsInitialization<V> - Interface in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Interface for initializing K-Medoids.
 
- KMedoidsPAM<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach.
 
- KMedoidsPAM(PrimitiveDistanceFunction<? super V, D>, int, int, KMedoidsInitialization<V>) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM
 
- 
Constructor.
 
- KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans
 
- 
Parameterization class.
 
- KMedoidsPAM.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMedoidsPAM.Parameterizer
 
-  
 
- KMLOutputHandler - Class in de.lmu.ifi.dbs.elki.result
 
- 
Class to handle KML output.
 
- KMLOutputHandler(File, OutlierScalingFunction, boolean, boolean) - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler
 
- 
Constructor.
 
- KMLOutputHandler.Parameterizer - Class in de.lmu.ifi.dbs.elki.result
 
- 
Parameterization class
 
- KMLOutputHandler.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.result.KMLOutputHandler.Parameterizer
 
-  
 
- kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory
 
- 
Multiplier for k.
 
- kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex.Factory.Parameterizer
 
- 
Multiplier for k.
 
- kmulti - Variable in class de.lmu.ifi.dbs.elki.index.projected.ProjectedIndex
 
- 
Multiplier for k.
 
- knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD
 
- 
 
- knn - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD.Parameterizer
 
- 
 
- KNN_CACHE_MAGIC - Static variable in class de.lmu.ifi.dbs.elki.application.cache.CacheDoubleDistanceKNNLists
 
- 
Magic number to identify files.
 
- KNN_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.subspace.SOD
 
- 
Parameter to specify the number of shared nearest neighbors to be
 considered for learning the subspace properties., must be an integer
 greater than 0.
 
- KNNBenchmarkAlgorithm<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.benchmark
 
- 
Benchmarking algorithm that computes the k nearest neighbors for each query
 point.
 
- KNNBenchmarkAlgorithm(DistanceFunction<? super O, D>, int, DatabaseConnection, double, RandomFactory) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm
 
- 
Constructor.
 
- KNNBenchmarkAlgorithm.Parameterizer<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm.benchmark
 
- 
Parameterization class
 
- KNNBenchmarkAlgorithm.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.benchmark.KNNBenchmarkAlgorithm.Parameterizer
 
-  
 
- KNNChangeEvent - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
Encapsulates information describing changes of the k nearest neighbors (kNNs)
 of some objects due to insertion or removal of objects.
 
- KNNChangeEvent(Object, KNNChangeEvent.Type, DBIDs, DBIDs) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent
 
- 
Used to create an event when kNNs of some objects have been changed.
 
- KNNChangeEvent.Type - Enum in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
Available event types.
 
- KNNChangeEvent.Type() - Constructor for enum de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNChangeEvent.Type
 
-  
 
- KNNDIST - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
 
-  
 
- knndistance - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DistanceDBIDPairKNNHeap
 
- 
 
- knndistance - Variable in class de.lmu.ifi.dbs.elki.database.ids.generic.DoubleDistanceDBIDPairKNNHeap
 
- 
 
- knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxDirectoryEntry
 
- 
The aggregated k-nearest neighbor distance of the underlying MkMax-Tree
 node.
 
- knnDistance - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxLeafEntry
 
- 
The k-nearest neighbor distance of the underlying data object.
 
- kNNDistance() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTreeNode
 
- 
Determines and returns the k-nearest neighbor distance of this node as the
 maximum of the k-nearest neighbor distances of all entries.
 
- kNNdistanceAdjustment(E, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTreeUnified
 
- 
Performs a distance adjustment in the subtree of the specified root entry.
 
- kNNdistanceAdjustment(MkMaxEntry, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax.MkMaxTree
 
- 
Adjusts the knn distance in the subtree of the specified root entry.
 
- kNNdistanceAdjustment(MkTabEntry, Map<DBID, KNNList<D>>) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTree
 
-  
 
- knnDistanceApproximation() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp.MkAppTreeNode
 
- 
Determines and returns the polynomial approximation for the knn distances
 of this node as the maximum of the polynomial approximations of all
 entries.
 
- KNNDistanceOrder<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
 
- 
Provides an order of the kNN-distances for all objects within the database.
 
- KNNDistanceOrder(DistanceFunction<O, D>, int, double) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder
 
- 
Constructor.
 
- KNNDistanceOrder.Parameterizer<O,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.algorithm
 
- 
Parameterization class.
 
- KNNDistanceOrder.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNDistanceOrder.Parameterizer
 
- 
Constructor.
 
- KNNDistanceOrderResult<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.result
 
- 
Wraps a list containing the knn distances.
 
- KNNDistanceOrderResult(String, String, List<D>) - Constructor for class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
 
- 
Construct result
 
- knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabDirectoryEntry
 
- 
The aggregated knn distances of the underlying node.
 
- knnDistances - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabLeafEntry
 
- 
The knn distances of the underlying data object.
 
- knnDistances(O) - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeIndex
 
- 
Returns the knn distance of the object with the specified id.
 
- kNNDistances() - Method in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab.MkTabTreeNode
 
- 
Determines and returns the knn distance of this node as the maximum knn
 distance of all entries.
 
- knnDistances - Variable in class de.lmu.ifi.dbs.elki.result.KNNDistanceOrderResult
 
- 
Store the kNN Distances
 
- KNNHeap<D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.ids.distance
 
- 
Interface for kNN heaps.
 
- KNNIndex<O> - Interface in de.lmu.ifi.dbs.elki.index
 
- 
Index with support for kNN queries.
 
- knnJoin - Variable in class de.lmu.ifi.dbs.elki.algorithm.clustering.DeLiClu
 
- 
Holds the knnJoin algorithm.
 
- KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
 
- 
Joins in a given spatial database to each object its k-nearest neighbors.
 
- KNNJoin(DistanceFunction<? super V, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin
 
- 
Constructor.
 
- KNNJoin.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry> - Class in de.lmu.ifi.dbs.elki.algorithm
 
- 
Parameterization class.
 
- KNNJoin.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Parameterizer
 
-  
 
- KNNJoin.Task - Class in de.lmu.ifi.dbs.elki.algorithm
 
- 
Task in the processing queue.
 
- KNNJoin.Task(D, int, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.KNNJoin.Task
 
- 
Constructor.
 
- KNNJoinMaterializeKNNPreprocessor<V extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
Class to materialize the kNN using a spatial join on an R-tree.
 
- KNNJoinMaterializeKNNPreprocessor(Relation<V>, DistanceFunction<? super V, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor
 
- 
Constructor.
 
- KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
The parameterizable factory.
 
- KNNJoinMaterializeKNNPreprocessor.Factory(int, DistanceFunction<? super O, D>) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor.Factory
 
- 
Constructor.
 
- KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
Parameterization class
 
- KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer
 
-  
 
- KNNList<D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.ids.distance
 
- 
Interface for kNN results.
 
- KNNListener - Interface in de.lmu.ifi.dbs.elki.index.preprocessed.knn
 
- 
Listener interface invoked when the k nearest neighbors (kNNs) of some
 objects have been changed due to insertion or removals of objects.
 
- KNNMARKER - Static variable in class de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection.DistanceFunctionVisualization.Instance
 
- 
Generic tags to indicate the type of element.
 
- KNNOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
 
- 
Outlier Detection based on the distance of an object to its k nearest
 neighbor.
 
- KNNOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier
 
- 
Constructor for a single kNN query.
 
- KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
 
- 
Parameterization class.
 
- KNNOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNOutlier.Parameterizer
 
-  
 
- knnq - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.AbstractMkTree
 
- 
Internal class for performing knn queries
 
- knnQueries - Variable in class de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.AbstractMTree.Statistics
 
- 
For counting the number of knn queries answered.
 
- knnQueries - Variable in class de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.AbstractRStarTree.Statistics
 
- 
For counting the number of knn queries answered.
 
- KNNQuery<O,D extends Distance<D>> - Interface in de.lmu.ifi.dbs.elki.database.query.knn
 
- 
The interface of an actual instance.
 
- knnQuery - Variable in class de.lmu.ifi.dbs.elki.database.query.rknn.LinearScanRKNNQuery
 
- 
KNN query we use.
 
- knnQuery - Variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance.Instance
 
- 
KNN query instance
 
- knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.knn.MaterializeKNNPreprocessor
 
- 
KNNQuery instance to use.
 
- knnQuery - Variable in class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
 
- 
The kNN query instance we use.
 
- KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
 
- 
The kNN query used.
 
- KNNQUERY_ID - Static variable in class de.lmu.ifi.dbs.elki.distance.distancefunction.MinKDistance
 
- 
OptionID for the KNN query class to use (preprocessor, approximation, ...)
 
- KNNQueryFilteredPCAIndex<NV extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 
- 
Provides the local neighborhood to be considered in the PCA as the k nearest
 neighbors of an object.
 
- KNNQueryFilteredPCAIndex(Relation<NV>, PCAFilteredRunner<NV>, KNNQuery<NV, DoubleDistance>, int) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex
 
- 
Constructor.
 
- KNNQueryFilteredPCAIndex.Factory<V extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 
- 
Factory class.
 
- KNNQueryFilteredPCAIndex.Factory(DistanceFunction<V, DoubleDistance>, PCAFilteredRunner<V>, Integer) - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory
 
- 
Constructor.
 
- KNNQueryFilteredPCAIndex.Factory.Parameterizer<NV extends NumberVector<?>> - Class in de.lmu.ifi.dbs.elki.index.preprocessed.localpca
 
- 
Parameterization class.
 
- KNNQueryFilteredPCAIndex.Factory.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.index.preprocessed.localpca.KNNQueryFilteredPCAIndex.Factory.Parameterizer
 
-  
 
- kNNReach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.LOFResult
 
- 
The kNN query w.r.t. the reachability distance.
 
- kNNRefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.LOFResult
 
- 
The kNN query w.r.t. the reference neighborhood distance.
 
- kNNsChanged(KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
 
-  
 
- kNNsChanged(KNNChangeEvent, KNNChangeEvent) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
 
- 
Invoked after the events of both preprocessors have been received, i.e.
 
- kNNsChanged(KNNChangeEvent) - Method in interface de.lmu.ifi.dbs.elki.index.preprocessed.knn.KNNListener
 
- 
Invoked after kNNs have been updated, inserted or removed
 in some way.
 
- kNNsInserted(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
 
- 
Invoked after kNNs have been inserted and updated, updates the result.
 
- kNNsRemoved(DBIDs, DBIDs, DBIDs, FlexibleLOF.LOFResult<O, D>) - Method in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.OnlineLOF.LOFKNNListener
 
- 
Invoked after kNNs have been removed and updated, updates the result.
 
- KNNSubList<D extends Distance<D>> - Class in de.lmu.ifi.dbs.elki.database.ids.generic
 
- 
Sublist of an existing result to contain only the first k elements.
 
- KNNSubList(KNNList<D>, int) - Constructor for class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList
 
- 
Constructor.
 
- KNNSubList.Itr - Class in de.lmu.ifi.dbs.elki.database.ids.generic
 
- 
Iterator for the sublist.
 
- KNNSubList.Itr() - Constructor for class de.lmu.ifi.dbs.elki.database.ids.generic.KNNSubList.Itr
 
-  
 
- KNNWeightOutlier<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
 
- 
Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors.
 
- KNNWeightOutlier(DistanceFunction<? super O, D>, int) - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier
 
- 
Constructor with parameters.
 
- KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>> - Class in de.lmu.ifi.dbs.elki.algorithm.outlier
 
- 
Parameterization class.
 
- KNNWeightOutlier.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.algorithm.outlier.KNNWeightOutlier.Parameterizer
 
-  
 
- KolmogorovSmirnovTest - Class in de.lmu.ifi.dbs.elki.math.statistics.tests
 
- 
Kolmogorov-Smirnov test.
 
- KolmogorovSmirnovTest() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.tests.KolmogorovSmirnovTest
 
- 
Constructor.
 
- KolmogorovSmirnovTest.Parameterizer - Class in de.lmu.ifi.dbs.elki.math.statistics.tests
 
- 
Parameterizer, to use the static instance.
 
- KolmogorovSmirnovTest.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.math.statistics.tests.KolmogorovSmirnovTest.Parameterizer
 
-  
 
- kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF
 
- 
Number of neighbors used for reachability distance.
 
- kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
 
- 
The set size to use for reachability distance.
 
- kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
 
- 
 
- kreach - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP.Parameterizer
 
- 
 
- KREACH_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its reachability distance.
 
- KREACH_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.LoOP
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its LOOP_SCORE, must be an integer greater than 1.
 
- KREF_ID - Static variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
 
- 
Parameter to specify the number of nearest neighbors of an object to be
 considered for computing its LOF_SCORE, must be an integer greater than
 1.
 
- krefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF
 
- 
Number of neighbors in comparison set.
 
- krefer - Variable in class de.lmu.ifi.dbs.elki.algorithm.outlier.lof.FlexibleLOF.Parameterizer
 
- 
The reference set size to use.
 
- Kulczynski1DistanceFunction - Class in de.lmu.ifi.dbs.elki.distance.distancefunction
 
- 
Kulczynski similarity 1, in distance form.
 
- Kulczynski1DistanceFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.Kulczynski1DistanceFunction
 
- 
 
- Kulczynski1DistanceFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.distancefunction
 
- 
Parameterization class.
 
- Kulczynski1DistanceFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.distancefunction.Kulczynski1DistanceFunction.Parameterizer
 
-  
 
- Kulczynski1SimilarityFunction - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
 
- 
Kulczynski similarity 1.
 
- Kulczynski1SimilarityFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski1SimilarityFunction
 
- 
 
- Kulczynski1SimilarityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
 
- 
Parameterization class.
 
- Kulczynski1SimilarityFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski1SimilarityFunction.Parameterizer
 
-  
 
- Kulczynski2SimilarityFunction - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
 
- 
Kulczynski similarity 2.
 
- Kulczynski2SimilarityFunction() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski2SimilarityFunction
 
- 
 
- Kulczynski2SimilarityFunction.Parameterizer - Class in de.lmu.ifi.dbs.elki.distance.similarityfunction
 
- 
Parameterization class.
 
- Kulczynski2SimilarityFunction.Parameterizer() - Constructor for class de.lmu.ifi.dbs.elki.distance.similarityfunction.Kulczynski2SimilarityFunction.Parameterizer
 
-