
V - Vector typeD - Distance type@Reference(authors="Y. Cheng", title="Mean shift, mode seeking, and clustering", booktitle="IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8", url="http://dx.doi.org/10.1109/34.400568") public class NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>> extends AbstractDistanceBasedAlgorithm<V,D,Clustering<MeanModel<V>>> implements ClusteringAlgorithm<Clustering<MeanModel<V>>>
 Reference:
 Y. Cheng
 Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence 17-8
 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterizer. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) KernelDensityFunction | 
kernel
Density estimation kernel. 
 | 
private static Logging | 
LOG
Class logger. 
 | 
(package private) static int | 
MAXITER
Maximum number of iterations. 
 | 
(package private) D | 
range
Range of the kernel. 
 | 
DISTANCE_FUNCTION_ID| Constructor and Description | 
|---|
NaiveMeanShiftClustering(DistanceFunction<? super V,D> distanceFunction,
                        KernelDensityFunction kernel,
                        D range)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
TypeInformation[] | 
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. 
 | 
protected Logging | 
getLogger()
Get the (STATIC) logger for this class. 
 | 
Clustering<MeanModel<V>> | 
run(Database database,
   Relation<V> relation)
Run the mean-shift clustering algorithm. 
 | 
getDistanceFunctionmakeParameterDistanceFunction, runclone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitrunprivate static final Logging LOG
KernelDensityFunction kernel
D extends NumberDistance<D,?> range
static final int MAXITER
public NaiveMeanShiftClustering(DistanceFunction<? super V,D> distanceFunction, KernelDensityFunction kernel, D range)
distanceFunction - Distance functionkernel - Kernel functionrange - Kernel radiuspublic Clustering<MeanModel<V>> run(Database database, Relation<V> relation)
database - Databaserelation - Data relationpublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithmgetInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<?>>>>protected Logging getLogger()
AbstractAlgorithmgetLogger in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<?>>>>