| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.lof | 
 LOF family of outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | 
 Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) 
 | 
| de.lmu.ifi.dbs.elki.data | 
 Basic classes for different data types, database object types and label types. 
 | 
| de.lmu.ifi.dbs.elki.datasource.filter.normalization | 
 Data normalization. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.clustering | 
 Evaluation of clustering results. 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework. 
 | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | 
 Functions to compute the similarity of dimensions (or the interestingness of the combination). 
 | 
| de.lmu.ifi.dbs.elki.math.geometry | 
 Algorithms from computational geometry. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.distribution | 
 Standard distributions, with random generation functionalities. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics.tests | 
 Statistical tests. 
 | 
| de.lmu.ifi.dbs.elki.utilities.datastructures.histogram | 
 Classes for computing histograms. 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling | 
 Scaling functions: linear, logarithmic, gamma, clipping, ... 
 | 
| Class and Description | 
|---|
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| IntegerMinMax
 Class to find the minimum and maximum int values in data. 
 | 
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| MeanVarianceMinMax
 Class collecting mean, variance, minimum and maximum statistics. 
 | 
| MinMax
 Class to find the minimum and maximum double values in data. 
 | 
| SinCosTable
 Class to precompute / cache Sinus and Cosinus values. 
 | 
| StatisticalMoments
 Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Class and Description | 
|---|
| Mean
 Compute the mean using a numerically stable online algorithm. 
 | 
| SinCosTable
 Class to precompute / cache Sinus and Cosinus values. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 | 
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| StatisticalMoments
 Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| MeanVariance
 Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
| Class and Description | 
|---|
| DoubleMinMax
 Class to find the minimum and maximum double values in data. 
 |