| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework. 
 | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | 
 Functions to compute the similarity of dimensions (or the interestingness of the combination). 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected boolean | 
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
                      Mean[] mdist,
                      List<? extends ModifiableDBIDs> clusters,
                      DistanceQuery<V,D> distQ)
Returns a list of clusters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MeanVariance
Do some simple statistics (mean, variance) using a numerically stable online
 algorithm. 
 | 
class  | 
MeanVarianceMinMax
Class collecting mean, variance, minimum and maximum statistics. 
 | 
class  | 
StatisticalMoments
Track various statistical moments, including mean, variance, skewness and
 kurtosis. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Mean[] | 
Mean.newArray(int dimensionality)
Create and initialize a new array of MeanVariance 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
Mean.put(Mean other)
Join the data of another MeanVariance instance. 
 | 
void | 
MeanVariance.put(Mean other)
Join the data of another MeanVariance instance. 
 | 
void | 
StatisticalMoments.put(Mean other)
Join the data of another MeanVariance instance. 
 | 
void | 
MeanVarianceMinMax.put(Mean other)  | 
| Constructor and Description | 
|---|
Mean(Mean other)
Constructor from other instance 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
MCEDimensionSimilarity.divide(DBIDArrayIter it,
      double[] data,
      ArrayList<DBIDs> idx,
      int start,
      int end,
      int depth,
      Mean mean)
Recursive call to further subdivide the array. 
 |