See: Description

| Interface | Description | 
|---|---|
| Distribution | 
 Statistical distributions, with their common functions. 
 | 
| DistributionEstimator<D extends Distribution> | 
 Estimate distribution parameters from a sample. 
 | 
| DistributionWithRandom | 
 Distribution that also has support for generating random numbers. 
 | 
| Class | Description | 
|---|---|
| BetaDistribution | 
 Beta Distribution with implementation of the regularized incomplete beta
 function 
 | 
| CauchyDistribution | 
 Cauchy distribution. 
 | 
| ChiDistribution | 
 Chi distribution. 
 | 
| ChiSquaredDistribution | 
 Chi-Squared distribution (a specialization of the Gamma distribution). 
 | 
| ConstantDistribution | 
 Pseudo distribution, that has a unique constant value. 
 | 
| ExponentialDistribution | 
 Exponential distribution. 
 | 
| ExponentiallyModifiedGaussianDistribution | 
 Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
 is a combination of a normal distribution and an exponential distribution. 
 | 
| ExponentiallyModifiedGaussianDistribution.OlivierNorbergEstimator | 
 Naive distribution estimation using mean and sample variance. 
 | 
| ExponentiallyModifiedGaussianDistribution.OlivierNorbergEstimator.Parameterizer | 
 Parameterization class. 
 | 
| GammaDistribution | 
 Gamma Distribution, with random generation and density functions. 
 | 
| GammaDistribution.ChoiWetteEstimator | 
 Estimate distribution parameters using the method by Choi and Wette. 
 | 
| GammaDistribution.ChoiWetteEstimator.Parameterizer | 
 Parameterization class. 
 | 
| GammaDistribution.MADEstimator | 
 Robust parameter estimation for the Gamma distribution. 
 | 
| GammaDistribution.MADEstimator.Parameterizer | 
 Parameterization class. 
 | 
| GammaDistribution.NaiveEstimator | 
 Simple parameter estimation for the Gamma distribution. 
 | 
| GammaDistribution.NaiveEstimator.Parameterizer | 
 Parameterization class. 
 | 
| HaltonUniformDistribution | 
 Halton sequences are a pseudo-uniform distribution. 
 | 
| LogGammaDistribution | 
 Gamma Distribution, with random generation and density functions. 
 | 
| LogGammaDistribution.ChoiWetteEstimator | 
 Estimate distribution parameters using the method by Choi and Wette. 
 | 
| LogGammaDistribution.ChoiWetteEstimator.Parameterizer | 
 Parameterization class. 
 | 
| LogGammaDistribution.MADEstimator | 
 Robust parameter estimation for the LogGamma distribution. 
 | 
| LogGammaDistribution.MADEstimator.Parameterizer | 
 Parameterization class. 
 | 
| LogGammaDistribution.NaiveEstimator | 
 Simple parameter estimation for the Gamma distribution. 
 | 
| LogGammaDistribution.NaiveEstimator.Parameterizer | 
 Parameterization class. 
 | 
| LogNormalDistribution | 
 Log-Normal distribution. 
 | 
| LogNormalDistribution.LevenbergMarquardtKDEEstimator | 
 Distribution parameter estimation using Levenberg-Marquardt iterative
 optimization and a kernel density estimation. 
 | 
| LogNormalDistribution.LevenbergMarquardtKDEEstimator.Parameterizer | 
 Parameterization class. 
 | 
| LogNormalDistribution.MADEstimator | 
 Estimator using Medians. 
 | 
| LogNormalDistribution.MADEstimator.Parameterizer | 
 Parameterization class. 
 | 
| LogNormalDistribution.NaiveEstimator | 
 Naive distribution estimation using mean and sample variance. 
 | 
| LogNormalDistribution.NaiveEstimator.Parameterizer | 
 Parameterization class. 
 | 
| NormalDistribution | 
 Gaussian distribution aka normal distribution 
 | 
| NormalDistribution.LevenbergMarquardtKDEEstimator | 
 Distribution parameter estimation using Levenberg-Marquardt iterative
 optimization and a kernel density estimation. 
 | 
| NormalDistribution.LevenbergMarquardtKDEEstimator.Parameterizer | 
 Parameterization class. 
 | 
| NormalDistribution.MADEstimator | 
 Estimator using Medians. 
 | 
| NormalDistribution.MADEstimator.Parameterizer | 
 Parameterization class. 
 | 
| NormalDistribution.NaiveEstimator | 
 Naive distribution estimation using mean and sample variance. 
 | 
| NormalDistribution.NaiveEstimator.Parameterizer | 
 Parameterization class. 
 | 
| PoissonDistribution | 
 INCOMPLETE implementation of the poisson distribution. 
 | 
| StudentsTDistribution | 
 Student's t distribution. 
 | 
| UniformDistribution | 
 Uniform distribution. 
 | 
| UniformDistribution.NaiveMinMaxEstimator | 
 Estimate the uniform distribution by computing min and max. 
 | 
| UniformDistribution.NaiveMinMaxEstimator.Parameterizer | 
 Parameterization class. 
 | 
| UniformDistribution.RefinedMinMaxEstimator | 
 Slightly improved estimation, that takes sample size into account. 
 | 
| UniformDistribution.RefinedMinMaxEstimator.Parameterizer | 
 Parameterization class. 
 | 
Standard distributions, with random generation functionalities.