| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm | 
 Algorithms suitable as a task for the  
KDDTask main routine. | 
| de.lmu.ifi.dbs.elki.algorithm.benchmark | 
 Benchmarking pseudo algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.hierarchical | |
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.lof | 
 LOF family of outlier detection algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.spatial | 
 Spatial outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.subspace | 
 Subspace outlier detection methods. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.statistics | 
 Statistical analysis algorithms
 
  The algorithms in this package perform statistical analysis of the data
  (e.g. compute distributions, distance distributions etc.) 
 | 
| de.lmu.ifi.dbs.elki.application.cache | 
 Utility applications for the persistence layer such as distance cache builders. 
 | 
| de.lmu.ifi.dbs.elki.application.greedyensemble | 
 Greedy ensembles for outlier detection. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.adapter | 
 Distance functions deriving distances from e.g. similarity measures 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.external | 
 Distance functions using external data sources. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancevalue | 
 Distance values, i.e. object storing an actual distance value along with
 comparison functions and value parsers. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction | 
 Similarity functions. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.similaritymatrix | 
 Render a distance matrix to visualize a clustering-distance-combination. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants | 
 M-Tree and variants. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees | 
 Metrical index structures based on the concepts of the M-Tree
 supporting processing of reverse k nearest neighbor queries by
 using the k-nn distances of the entries. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkapp | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkcop | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mkmax | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mktrees.mktab | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.mtree | |
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query | 
 Classes for performing queries (knn, range, ...) on metrical trees. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.insert | 
 Insertion (choose path) strategies of nodes in an M-Tree (and variants). 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.strategies.split | 
 Splitting strategies of nodes in an M-Tree (and variants). 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing. 
 | 
| de.lmu.ifi.dbs.elki.visualization.opticsplot | 
 Code for drawing OPTICS plots 
 | 
| de.lmu.ifi.dbs.elki.visualization.svg | 
 Base SVG functionality (generation, markers, thumbnails, export, ...). 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.index | 
 Visualizers for index structures based on 2D projections. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.selection | 
 Visualizers for object selection based on 2D projections. 
 | 
| tutorial.clustering | 
 Classes from the tutorial on implementing a custom k-means variation. 
 | 
| tutorial.outlier | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MaterializeDistances<O,D extends NumberDistance<D,?>>
Algorithm to materialize all the distances in a data set. 
 | 
static class  | 
MaterializeDistances.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
RangeQueryBenchmarkAlgorithm<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Benchmarking algorithm that computes a range query for each point. 
 | 
static class  | 
RangeQueryBenchmarkAlgorithm.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NaiveMeanShiftClustering<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Mean-shift based clustering algorithm. 
 | 
static class  | 
NaiveMeanShiftClustering.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterizer. 
 | 
class  | 
OPTICSXi<N extends NumberDistance<N,?>>
Class to handle OPTICS Xi extraction. 
 | 
static class  | 
OPTICSXi.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class. 
 | 
private static class  | 
OPTICSXi.SteepScanPosition<N extends NumberDistance<N,?>>
Position when scanning for steep areas 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
NaiveMeanShiftClustering.range
Range of the kernel. 
 | 
(package private) D | 
NaiveMeanShiftClustering.Parameterizer.range
Kernel radius. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NaiveAgglomerativeHierarchicalClustering<O,D extends NumberDistance<D,?>>
This tutorial will step you through implementing a well known clustering
 algorithm, agglomerative hierarchical clustering, in multiple steps. 
 | 
static class  | 
NaiveAgglomerativeHierarchicalClustering.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KMeansPlusPlusInitialMeans<V,D extends NumberDistance<D,?>>
K-Means++ initialization for k-means. 
 | 
static class  | 
KMeansPlusPlusInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KMedoidsEM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using a "bulk" variation of the
 "Partitioning Around Medoids" approach. 
 | 
static class  | 
KMedoidsEM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KMedoidsPAM<V,D extends NumberDistance<D,?>>
Provides the k-medoids clustering algorithm, using the
 "Partitioning Around Medoids" approach. 
 | 
static class  | 
KMedoidsPAM.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
PAMInitialMeans<V,D extends NumberDistance<D,?>>
PAM initialization for k-means (and of course, PAM). 
 | 
static class  | 
PAMInitialMeans.Parameterizer<V,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
COP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Correlation outlier probability: Outlier Detection in Arbitrarily Oriented
 Subspaces
 
 
 Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek 
Outlier Detection in Arbitrarily Oriented Subspaces in: Proc.  | 
static class  | 
COP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KNNOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the distance of an object to its k nearest
 neighbor. 
 | 
static class  | 
KNNOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
KNNWeightOutlier<O,D extends NumberDistance<D,?>>
Outlier Detection based on the accumulated distances of a point to its k
 nearest neighbors. 
 | 
static class  | 
KNNWeightOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
OPTICSOF<O,D extends NumberDistance<D,?>>
OPTICSOF provides the Optics-of algorithm, an algorithm to find Local
 Outliers in a database. 
 | 
static class  | 
OPTICSOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
ReferenceBasedOutlierDetection<V extends NumberVector<?>,D extends NumberDistance<D,?>>
 provides the Reference-Based Outlier Detection algorithm, an algorithm that
 computes kNN distances approximately, using reference points. 
 | 
static class  | 
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SimpleCOP<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Algorithm to compute local correlation outlier probability. 
 | 
static class  | 
SimpleCOP.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ALOCI<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "approximate Local Correlation Integral". 
 | 
static class  | 
ALOCI.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
FlexibleLOF<O,D extends NumberDistance<D,?>>
 Flexible variant of the "Local Outlier Factor" algorithm. 
 | 
static class  | 
FlexibleLOF.LOFResult<O,D extends NumberDistance<D,?>>
Encapsulates information like the neighborhood, the LRD and LOF values of
 the objects during a run of the  
FlexibleLOF algorithm. | 
static class  | 
FlexibleLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
INFLO<O,D extends NumberDistance<D,?>>
INFLO provides the Mining Algorithms (Two-way Search Method) for Influence
 Outliers using Symmetric Relationship
 
 Reference:  
Jin, W., Tung, A., Han, J., and Wang, W. 2006 Ranking outliers using symmetric neighborhood relationship In Proc.  | 
static class  | 
INFLO.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LDF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Outlier Detection with Kernel Density Functions. 
 | 
static class  | 
LDF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LDOF<O,D extends NumberDistance<D,?>>
 Computes the LDOF (Local Distance-Based Outlier Factor) for all objects of a
 Database. 
 | 
static class  | 
LDOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LOCI<O,D extends NumberDistance<D,?>>
Fast Outlier Detection Using the "Local Correlation Integral". 
 | 
static class  | 
LOCI.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LOF<O,D extends NumberDistance<D,?>>
 Algorithm to compute density-based local outlier factors in a database based
 on a specified parameter  
LOF.Parameterizer.K_ID (-lof.k). | 
static class  | 
LOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
LoOP<O,D extends NumberDistance<D,?>>
LoOP: Local Outlier Probabilities
 
 Distance/density based algorithm similar to LOF to detect outliers, but with
 statistical methods to achieve better result stability. 
 | 
static class  | 
LoOP.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
OnlineLOF<O,D extends NumberDistance<D,?>>
Incremental version of the  
LOF Algorithm, supports insertions and
 removals. | 
static class  | 
OnlineLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SimpleKernelDensityLOF<O extends NumberVector<?>,D extends NumberDistance<D,?>>
A simple variant of the LOF algorithm, which uses a simple kernel density
 estimation instead of the local reachability density. 
 | 
static class  | 
SimpleKernelDensityLOF.Parameterizer<O extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SimplifiedLOF<O,D extends NumberDistance<D,?>>
A simplified version of the original LOF algorithm, which does not use the
 reachability distance, yielding less stable results on inliers. 
 | 
static class  | 
SimplifiedLOF.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
LOCI.rmax
Holds the value of  
LOCI.RMAX_ID. | 
protected D | 
LOCI.Parameterizer.rmax  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceBasedSpatialOutlier<N,O,D extends NumberDistance<D,?>>
Abstract base class for distance-based spatial outlier detection methods. 
 | 
static class  | 
AbstractDistanceBasedSpatialOutlier.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
CTLuGLSBackwardSearchAlgorithm<V extends NumberVector<?>,D extends NumberDistance<D,?>>
GLS-Backward Search is a statistical approach to detecting spatial outliers. 
 | 
static class  | 
CTLuGLSBackwardSearchAlgorithm.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class 
 | 
class  | 
CTLuRandomWalkEC<N,D extends NumberDistance<D,?>>
Spatial outlier detection based on random walks. 
 | 
static class  | 
CTLuRandomWalkEC.Parameterizer<N,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SLOM<N,O,D extends NumberDistance<D,?>>
SLOM: a new measure for local spatial outliers
 
 
 Reference: 
Sanjay Chawla and Pei Sun SLOM: a new measure for local spatial outliers in Knowledge and Information Systems 9(4), 412-429, 2006 This implementation works around some corner cases in SLOM, in particular when an object has none or a single neighbor only (albeit the results will still not be too useful then), which will result in divisions by zero.  | 
static class  | 
SLOM.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
SOF<N,O,D extends NumberDistance<D,?>>
The Spatial Outlier Factor (SOF) is a spatial
  
LOF variation. | 
static class  | 
SOF.Parameterizer<N,O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SOD<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Subspace Outlier Degree. 
 | 
static class  | 
SOD.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AveragePrecisionAtK<V,D extends NumberDistance<D,?>>
Evaluate a distance functions performance by computing the average precision
 at k, when ranking the objects by distance. 
 | 
static class  | 
AveragePrecisionAtK.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
DistanceStatisticsWithClasses<O,D extends NumberDistance<D,?>>
Algorithm to gather statistics over the distance distribution in the data
 set. 
 | 
static class  | 
DistanceStatisticsWithClasses.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
EvaluateRankingQuality<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. 
 | 
static class  | 
EvaluateRankingQuality.Parameterizer<V extends NumberVector<?>,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
RankingQualityHistogram<O,D extends NumberDistance<D,?>>
Evaluate a distance function with respect to kNN queries. 
 | 
static class  | 
RankingQualityHistogram.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CacheDoubleDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Precompute an on-disk distance matrix, using double precision. 
 | 
static class  | 
CacheDoubleDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
CacheDoubleDistanceKNNLists<O,D extends NumberDistance<D,?>>
Precompute the k nearest neighbors in a disk cache. 
 | 
static class  | 
CacheDoubleDistanceKNNLists.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
CacheFloatDistanceInOnDiskMatrix<O,D extends NumberDistance<D,?>>
Precompute an on-disk distance matrix, using double precision. 
 | 
static class  | 
CacheFloatDistanceInOnDiskMatrix.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ComputeKNNOutlierScores<O,D extends NumberDistance<D,?>>
Application that runs a series of kNN-based algorithms on a data set, for
 building an ensemble in a second step. 
 | 
static class  | 
ComputeKNNOutlierScores.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.similarityFunction
Holds the similarity function. 
 | 
protected NormalizedSimilarityFunction<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.Parameterizer.similarityFunction
Holds the similarity function. 
 | 
private SimilarityQuery<? super O,? extends NumberDistance<?,?>> | 
AbstractSimilarityAdapter.Instance.similarityQuery
The similarity query we use. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NumberDistanceParser<D extends NumberDistance<D,?>>
Provides a parser for parsing one distance value per line. 
 | 
static class  | 
NumberDistanceParser.Parameterizer<D extends NumberDistance<D,?>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
NumberDistanceParser.distanceFactory
The distance function. 
 | 
protected D | 
NumberDistanceParser.Parameterizer.distanceFactory
The distance function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BitDistance
Provides a Distance for a bit-valued distance. 
 | 
class  | 
DoubleDistance
Provides a Distance for a double-valued distance. 
 | 
class  | 
FloatDistance
Provides a Distance for a float-valued distance. 
 | 
class  | 
IntegerDistance
Provides an integer distance value. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected PrimitiveDistanceFunction<? super O,? extends NumberDistance<?,?>> | 
InvertedDistanceSimilarityFunction.distanceFunction
Holds the similarity function. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private DistanceFunction<? super O,? extends NumberDistance<?,?>> | 
ComputeSimilarityMatrixImage.distanceFunction
The distance function to use 
 | 
private DistanceFunction<O,? extends NumberDistance<?,?>> | 
ComputeSimilarityMatrixImage.Parameterizer.distanceFunction
The distance function to use 
 | 
| Constructor and Description | 
|---|
ComputeSimilarityMatrixImage(DistanceFunction<? super O,? extends NumberDistance<?,?>> distanceFunction,
                            ScalingFunction scaling,
                            boolean skipzero)
Constructor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMTree<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,S extends MTreeSettings<O,D,N,E>>
Abstract super class for all M-Tree variants. 
 | 
class  | 
AbstractMTreeFactory<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,I extends AbstractMTree<O,D,N,E,S> & Index,S extends MTreeSettings<O,D,N,E>>
Abstract factory for various MTrees 
 | 
static class  | 
AbstractMTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,S extends MTreeSettings<O,D,N,E>>
Parameterization class. 
 | 
class  | 
AbstractMTreeNode<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Abstract super class for nodes in M-Tree variants. 
 | 
class  | 
MTreeSettings<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Class to store the MTree settings. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMkTree<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,S extends MTreeSettings<O,D,N,E>>
Abstract class for all M-Tree variants supporting processing of reverse
 k-nearest neighbor queries by using the k-nn distances of the entries, where
 k is less than or equal to the given parameter. 
 | 
class  | 
AbstractMkTreeUnified<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,S extends MkTreeSettings<O,D,N,E>>
Abstract class for all M-Tree variants supporting processing of reverse
 k-nearest neighbor queries by using the k-nn distances of the entries, where
 k is less than or equal to the given parameter. 
 | 
class  | 
AbstractMkTreeUnifiedFactory<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,I extends AbstractMkTree<O,D,N,E,S> & Index,S extends MkTreeSettings<O,D,N,E>>
Abstract factory for various Mk-Trees 
 | 
static class  | 
AbstractMkTreeUnifiedFactory.Parameterizer<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry,S extends MkTreeSettings<O,D,N,E>>
Parameterization class. 
 | 
class  | 
MkTreeSettings<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Class with settings for MkTrees. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkAppTree<O,D extends NumberDistance<D,?>>
MkAppTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkAppTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkApp-Tree 
 | 
static class  | 
MkAppTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkAppTreeIndex<O,D extends NumberDistance<D,?>>
MkAppTree used as database index. 
 | 
(package private) class  | 
MkAppTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkApp-Tree. 
 | 
class  | 
MkAppTreeSettings<O,D extends NumberDistance<D,?>>
Settings class for the MkApp Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkCoPTree<O,D extends NumberDistance<D,?>>
MkCopTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkCopTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a MkCoPTree-Tree 
 | 
static class  | 
MkCopTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkCoPTreeIndex<O,D extends NumberDistance<D,?>>
MkCoPTree used as database index. 
 | 
(package private) class  | 
MkCoPTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an MkCop-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkMaxTree<O,D extends NumberDistance<D,?>>
MkMaxTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k <= k_max. 
 | 
class  | 
MkMaxTreeFactory<O,D extends NumberDistance<D,?>>
Factory for MkMaxTrees 
 | 
static class  | 
MkMaxTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkMaxTreeIndex<O,D extends NumberDistance<D,?>>
MkMax tree 
 | 
(package private) class  | 
MkMaxTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an  
MkMaxTree. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MkTabTree<O,D extends NumberDistance<D,?>>
MkTabTree is a metrical index structure based on the concepts of the M-Tree
 supporting efficient processing of reverse k nearest neighbor queries for
 parameter k < kmax. 
 | 
class  | 
MkTabTreeFactory<O,D extends NumberDistance<D,?>>
Factory for MkTabTrees 
 | 
static class  | 
MkTabTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MkTabTreeIndex<O,D extends NumberDistance<D,?>>
MkTabTree used as database index. 
 | 
(package private) class  | 
MkTabTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in a MkMax-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MTree<O,D extends NumberDistance<D,?>>
MTree is a metrical index structure based on the concepts of the M-Tree. 
 | 
class  | 
MTreeFactory<O,D extends NumberDistance<D,?>>
Factory for a M-Tree 
 | 
static class  | 
MTreeFactory.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class. 
 | 
class  | 
MTreeIndex<O,D extends NumberDistance<D,?>>
Class for using an m-tree as database index. 
 | 
class  | 
MTreeNode<O,D extends NumberDistance<D,?>>
Represents a node in an M-Tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MetricalIndexKNNQuery<O,D extends NumberDistance<D,?>>
Instance of a KNN query for a particular spatial index. 
 | 
class  | 
MetricalIndexRangeQuery<O,D extends NumberDistance<D,?>>
Instance of a range query for a particular spatial index. 
 | 
class  | 
MkTreeRKNNQuery<O,D extends NumberDistance<D,?>>
Instance of a rKNN query for a particular spatial index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <O,D extends NumberDistance<D,?>>  | 
MTreeQueryUtil.getKNNQuery(AbstractMTree<O,D,?,?,?> tree,
           DistanceQuery<O,D> distanceQuery,
           Object... hints)
Get an RTree knn query, using an optimized double implementation when
 possible. 
 | 
static <O,D extends NumberDistance<D,?>>  | 
MTreeQueryUtil.getRangeQuery(AbstractMTree<O,D,?,?,?> tree,
             DistanceQuery<O,D> distanceQuery,
             Object... hints)
Get an RTree knn query, using an optimized double implementation when
 possible. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MinimumEnlargementInsert<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Default insertion strategy for the M-tree. 
 | 
interface  | 
MTreeInsert<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Default insertion strategy for the M-tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MLBDistSplit<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree. 
 | 
class  | 
MMRadSplit<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree. 
 | 
class  | 
MRadSplit<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree. 
 | 
class  | 
MTreeSplit<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Abstract super class for splitting a node in an M-Tree. 
 | 
class  | 
RandomSplit<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Encapsulates the required methods for a split of a node in an M-Tree. 
 | 
static class  | 
RandomSplit.Parameterizer<O,D extends NumberDistance<D,?>,N extends AbstractMTreeNode<O,D,N,E>,E extends MTreeEntry>
Parameterization class. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private <D extends NumberDistance<D,?>>  | 
PCAFilteredAutotuningRunner.assertSortedByDistance(DistanceDBIDList<D> results)
Ensure that the results are sorted by distance. 
 | 
<D extends NumberDistance<D,?>>  | 
PCAFilteredAutotuningRunner.processQueryResult(DistanceDBIDList<D> results,
                  Relation<? extends V> database)  | 
<D extends NumberDistance<D,?>>  | 
PCARunner.processQueryResult(DistanceDBIDList<D> results,
                  Relation<? extends V> database)
Run PCA on a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
PCAFilteredRunner.processQueryResult(DistanceDBIDList<D> results,
                  Relation<? extends V> database)
Run PCA on a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database)  | 
<D extends NumberDistance<D,?>>  | 
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)  | 
<D extends NumberDistance<D,?>>  | 
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
WeightedCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSNumberDistance<D extends NumberDistance<D,?>>
Adapter that will map a regular number distance to its double value. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <D extends NumberDistance<?,?>>  | 
SVGHyperSphere.drawCross(SVGPlot svgp,
         Projection2D proj,
         NumberVector<?> mid,
         D rad)
Wireframe "cross" hypersphere 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
TreeSphereVisualization.Instance<D extends NumberDistance<D,?>,N extends AbstractMTreeNode<?,D,N,E>,E extends MTreeEntry>
Instance for a particular tree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceFunctionVisualization.Instance<D extends NumberDistance<D,?>>
Instance, visualizing a particular set of kNNs 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NaiveAgglomerativeHierarchicalClustering1<O,D extends NumberDistance<D,?>>
This tutorial will step you through implementing a well known clustering
 algorithm, agglomerative hierarchical clustering, in multiple steps. 
 | 
static class  | 
NaiveAgglomerativeHierarchicalClustering1.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
class  | 
NaiveAgglomerativeHierarchicalClustering2<O,D extends NumberDistance<D,?>>
This tutorial will step you through implementing a well known clustering
 algorithm, agglomerative hierarchical clustering, in multiple steps. 
 | 
static class  | 
NaiveAgglomerativeHierarchicalClustering2.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
class  | 
NaiveAgglomerativeHierarchicalClustering3<O,D extends NumberDistance<D,?>>
This tutorial will step you through implementing a well known clustering
 algorithm, agglomerative hierarchical clustering, in multiple steps. 
 | 
static class  | 
NaiveAgglomerativeHierarchicalClustering3.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
class  | 
NaiveAgglomerativeHierarchicalClustering4<O,D extends NumberDistance<D,?>>
This tutorial will step you through implementing a well known clustering
 algorithm, agglomerative hierarchical clustering, in multiple steps. 
 | 
static class  | 
NaiveAgglomerativeHierarchicalClustering4.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceStddevOutlier<O,D extends NumberDistance<D,?>>
A simple outlier detection algorithm that computes the standard deviation of
 the kNN distances. 
 | 
static class  | 
DistanceStddevOutlier.Parameterizer<O,D extends NumberDistance<D,?>>
Parameterization class 
 |