|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.trees.j48.ClassifierTree
weka.classifiers.trees.j48.C45PruneableClassifierTree
Class for handling a tree structure that can be pruned using C4.5 procedures.
Field Summary | |
(package private) float |
m_CF
The confidence factor for pruning. |
(package private) boolean |
m_cleanup
Cleanup after the tree has been built. |
(package private) boolean |
m_pruneTheTree
True if the tree is to be pruned. |
(package private) boolean |
m_subtreeRaising
Is subtree raising to be performed? |
Fields inherited from class weka.classifiers.trees.j48.ClassifierTree |
m_id, m_isEmpty, m_isLeaf, m_localModel, m_sons, m_test, m_toSelectModel, m_train |
Fields inherited from interface weka.core.Drawable |
BayesNet, NOT_DRAWABLE, TREE |
Constructor Summary | |
C45PruneableClassifierTree(ModelSelection toSelectLocModel,
boolean pruneTree,
float cf,
boolean raiseTree,
boolean cleanup)
Constructor for pruneable tree structure. |
Method Summary | |
void |
buildClassifier(Instances data)
Method for building a pruneable classifier tree. |
void |
collapse()
Collapses a tree to a node if training error doesn't increase. |
private double |
getEstimatedErrors()
Computes estimated errors for tree. |
private double |
getEstimatedErrorsForBranch(Instances data)
Computes estimated errors for one branch. |
private double |
getEstimatedErrorsForDistribution(Distribution theDistribution)
Computes estimated errors for leaf. |
protected ClassifierTree |
getNewTree(Instances data)
Returns a newly created tree. |
private double |
getTrainingErrors()
Computes errors of tree on training data. |
private ClassifierSplitModel |
localModel()
Method just exists to make program easier to read. |
private void |
newDistribution(Instances data)
Computes new distributions of instances for nodes in tree. |
void |
prune()
Prunes a tree using C4.5's pruning procedure. |
private C45PruneableClassifierTree |
son(int index)
Method just exists to make program easier to read. |
Methods inherited from class weka.classifiers.trees.j48.ClassifierTree |
assignIDs, buildTree, buildTree, classifyInstance, cleanup, distributionForInstance, getNewTree, graph, graphType, nextID, numLeaves, numNodes, prefix, resetID, toSource, toString |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
boolean m_pruneTheTree
float m_CF
boolean m_subtreeRaising
boolean m_cleanup
Constructor Detail |
public C45PruneableClassifierTree(ModelSelection toSelectLocModel, boolean pruneTree, float cf, boolean raiseTree, boolean cleanup) throws java.lang.Exception
toSelectLocModel
- selection method for local splitting modelpruneTree
- true if the tree is to be prunedcf
- the confidence factor for pruning
java.lang.Exception
- if something goes wrongMethod Detail |
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier
in class ClassifierTree
java.lang.Exception
- if something goes wrongpublic final void collapse()
public void prune() throws java.lang.Exception
java.lang.Exception
- if something goes wrongprotected ClassifierTree getNewTree(Instances data) throws java.lang.Exception
getNewTree
in class ClassifierTree
data
- the training data
java.lang.Exception
- if something goes wrongprivate double getEstimatedErrors()
private double getEstimatedErrorsForBranch(Instances data) throws java.lang.Exception
java.lang.Exception
- if something goes wrongprivate double getEstimatedErrorsForDistribution(Distribution theDistribution)
private double getTrainingErrors()
private ClassifierSplitModel localModel()
private void newDistribution(Instances data) throws java.lang.Exception
java.lang.Exception
- if something goes wrongprivate C45PruneableClassifierTree son(int index)
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |