|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.trees.j48.ModelSelection
weka.classifiers.trees.j48.C45ModelSelection
Class for selecting a C4.5-type split for a given dataset.
Field Summary | |
private Instances |
m_allData
All the training data |
private int |
m_minNoObj
Minimum number of objects in interval. |
Constructor Summary | |
C45ModelSelection(int minNoObj,
Instances allData)
Initializes the split selection method with the given parameters. |
Method Summary | |
void |
cleanup()
Sets reference to training data to null. |
ClassifierSplitModel |
selectModel(Instances data)
Selects C4.5-type split for the given dataset. |
ClassifierSplitModel |
selectModel(Instances train,
Instances test)
Selects C4.5-type split for the given dataset. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
private int m_minNoObj
private Instances m_allData
Constructor Detail |
public C45ModelSelection(int minNoObj, Instances allData)
minNoObj
- minimum number of instances that have to occur in at least two
subsets induced by splitallData
- FULL training dataset (necessary for
selection of split points).Method Detail |
public void cleanup()
public final ClassifierSplitModel selectModel(Instances data)
selectModel
in class ModelSelection
public final ClassifierSplitModel selectModel(Instances train, Instances test)
selectModel
in class ModelSelection
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |