|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.trees.DecisionStump
Class for building and using a decision stump. Usually used in conjunction with a boosting algorithm. Typical usage:
java weka.classifiers.trees.LogitBoost -I 100 -W weka.classifiers.trees.DecisionStump
-t training_data
Field Summary | |
private int |
m_AttIndex
The attribute used for classification. |
private double[][] |
m_Distribution
The distribution of class values or the means in each subset. |
private Instances |
m_Instances
The instances used for training. |
private double |
m_SplitPoint
The split point (index respectively). |
Fields inherited from class weka.classifiers.Classifier |
m_Debug |
Constructor Summary | |
DecisionStump()
|
Method Summary | |
void |
buildClassifier(Instances instances)
Generates the classifier. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
private double |
findSplitNominal(int index)
Finds best split for nominal attribute and returns value. |
private double |
findSplitNominalNominal(int index)
Finds best split for nominal attribute and nominal class and returns value. |
private double |
findSplitNominalNumeric(int index)
Finds best split for nominal attribute and numeric class and returns value. |
private double |
findSplitNumeric(int index)
Finds best split for numeric attribute and returns value. |
private double |
findSplitNumericNominal(int index)
Finds best split for numeric attribute and nominal class and returns value. |
private double |
findSplitNumericNumeric(int index)
Finds best split for numeric attribute and numeric class and returns value. |
java.lang.String |
globalInfo()
Returns a string describing classifier |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
private java.lang.String |
printClass(double[] dist)
Prints a classification. |
private java.lang.String |
printDist(double[] dist)
Prints a class distribution. |
private java.lang.String |
sourceClass(Attribute c,
double[] dist)
|
java.lang.String |
toSource(java.lang.String className)
Returns the decision tree as Java source code. |
java.lang.String |
toString()
Returns a description of the classifier. |
private double |
variance(double[][] s,
double[] sS,
double[] sumOfWeights)
Computes variance for subsets. |
private int |
whichSubset(Instance instance)
Returns the subset an instance falls into. |
Methods inherited from class weka.classifiers.Classifier |
classifyInstance, debugTipText, forName, getDebug, getOptions, listOptions, makeCopies, setDebug, setOptions |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
private int m_AttIndex
private double m_SplitPoint
private double[][] m_Distribution
private Instances m_Instances
Constructor Detail |
public DecisionStump()
Method Detail |
public java.lang.String globalInfo()
public void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier
in class Classifier
instances
- set of instances serving as training data
java.lang.Exception
- if the classifier has not been generated successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if distribution can't be computedpublic java.lang.String toSource(java.lang.String className) throws java.lang.Exception
toSource
in interface Sourcable
className
- the name that should be given to the source class.
java.lang.Exception
- if something goes wrongprivate java.lang.String sourceClass(Attribute c, double[] dist)
public java.lang.String toString()
private java.lang.String printDist(double[] dist) throws java.lang.Exception
dist
- the class distribution to print
java.lang.Exception
- if distribution can't be printedprivate java.lang.String printClass(double[] dist) throws java.lang.Exception
dist
- the class distribution
java.lang.Exception
- if the classification can't be printedprivate double findSplitNominal(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double findSplitNominalNominal(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double findSplitNominalNumeric(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double findSplitNumeric(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double findSplitNumericNominal(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double findSplitNumericNumeric(int index) throws java.lang.Exception
index
- attribute index
java.lang.Exception
- if something goes wrongprivate double variance(double[][] s, double[] sS, double[] sumOfWeights)
private int whichSubset(Instance instance) throws java.lang.Exception
java.lang.Exception
public static void main(java.lang.String[] argv)
argv
- the options
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |