|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.lazy.kstar.KStarNumericAttribute
A custom class which provides the environment for computing the transformation probability of a specified test instance numeric attribute to a specified train instance numeric attribute.
Field Summary | |
protected int |
m_ActualCount
The number of train instances with no missing attribute values |
protected int |
m_AttrIndex
The index of the attribute in the test and train instances |
protected double |
m_AverageProb
Average probability of test attribute transforming into train attribute |
protected int |
m_BlendFactor
default sphere of influence blend setting |
protected int |
m_BlendMethod
0 = use specified blend, 1 = entropic blend setting |
protected KStarCache |
m_Cache
A cache for storing attribute values and their corresponding scale parameters |
protected int |
m_ClassType
The class attribute type |
protected double[] |
m_Distances
The set of disctances from the test attribute to the set of train attributes |
protected int |
m_MissingMode
missing value treatment |
protected double |
m_MissingProb
Probability of test attribute transforming into train attribute with missing value |
protected int |
m_NumAttributes
The number of attributes |
protected int |
m_NumClasses
The number of class values |
protected int |
m_NumInstances
The number of instances in the dataset |
protected int[][] |
m_RandClassCols
Set of colomns: each colomn representing a randomised version of the train dataset class colomn |
protected double |
m_Scale
The scale parameter |
protected double |
m_SmallestProb
Smallest probability of test attribute transforming into train attribute |
protected Instance |
m_Test
The test instance |
protected Instance |
m_Train
The train instance |
protected Instances |
m_TrainSet
The training instances used for classification. |
Fields inherited from interface weka.classifiers.lazy.kstar.KStarConstants |
B_ENTROPY, B_SPHERE, EPSILON, FLOOR, FLOOR1, INITIAL_STEP, LOG2, M_AVERAGE, M_DELETE, M_MAXDIFF, M_NORMAL, NUM_RAND_COLS, OFF, ON, ROOT_FINDER_ACCURACY, ROOT_FINDER_MAX_ITER |
Constructor Summary | |
KStarNumericAttribute(Instance test,
Instance train,
int attrIndex,
Instances trainSet,
int[][] randClassCols,
KStarCache cache)
Constructor |
Method Summary | |
private void |
calculateEntropy(double scale,
KStarWrapper params)
Calculates several parameters aside from the entropy: for a specified scale factor, calculates the actual entropy, a random entropy using a randomized set of class value colomns, and records the average and smallest probabilities (for use in missing value case). |
private void |
calculateSphereSize(double scale,
KStarWrapper params)
Calculates the size of the "sphere of influence" defined as: sphere = sum(P)^2/sum(P^2) where P(i) = root*exp(-2*i*root). |
private void |
init()
Initializes the m_Attributes of the class. |
private double |
PStar(double x,
double scale)
Calculates the value of P for a given value x using the expression: P(x) = scale * exp( -2.0 * x * scale ) |
private double |
scaleFactorUsingBlend()
Calculates the scale factor for the attribute indexed "m_AttrIndex" in test instance "m_Test" using a global blending factor (default value is 20%). |
private double |
scaleFactorUsingEntropy()
Calculates the scale factor using entropy. |
void |
setBlendFactor(int factor)
Set the blending factor |
void |
setBlendMethod(int method)
Set the blending method |
void |
setMissingMode(int mode)
Set the missing value mode. |
void |
setOptions(int missingmode,
int blendmethod,
int blendfactor)
Set options. |
double |
transProb()
Calculates the transformation probability of the attribute indexed "m_AttrIndex" in test instance "m_Test" to the same attribute in the train instance "m_Train". |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
protected Instances m_TrainSet
protected Instance m_Test
protected Instance m_Train
protected int m_AttrIndex
protected double m_Scale
protected double m_MissingProb
protected double m_AverageProb
protected double m_SmallestProb
protected double[] m_Distances
protected int[][] m_RandClassCols
protected int m_ActualCount
protected KStarCache m_Cache
protected int m_NumInstances
protected int m_NumClasses
protected int m_NumAttributes
protected int m_ClassType
protected int m_MissingMode
protected int m_BlendMethod
protected int m_BlendFactor
Constructor Detail |
public KStarNumericAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCols, KStarCache cache)
Method Detail |
private void init()
public double transProb()
private double scaleFactorUsingBlend()
private void calculateSphereSize(double scale, KStarWrapper params)
private double scaleFactorUsingEntropy()
private void calculateEntropy(double scale, KStarWrapper params)
private double PStar(double x, double scale)
x
- input valuescale
- the scale factor
public void setOptions(int missingmode, int blendmethod, int blendfactor)
missingmode
- the missing value treatment to useblendmethod
- the blending method to useblendfactor
- the level of blending to usepublic void setMissingMode(int mode)
mode
- the type of missing value treatment to usepublic void setBlendMethod(int method)
method
- the blending method to usepublic void setBlendFactor(int factor)
factor
- the level of blending to use
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |