|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.lazy.kstar.KStarNominalAttribute
A custom class which provides the environment for computing the transformation probability of a specified test instance nominal attribute to a specified train instance nominal attribute.
Field Summary | |
protected int |
m_AttrIndex
The index of the nominal attribute in the test and train instances |
protected double |
m_AverageProb
Average probability of test attribute transforming into train attribute |
protected int |
m_BlendFactor
default sphere of influence blend setting |
protected int |
m_BlendMethod
B_SPHERE = use specified blend, B_ENTROPY = entropic blend setting |
protected KStarCache |
m_Cache
A cache for storing attribute values and their corresponding stop parameters |
protected int |
m_ClassType
The class attribute type |
protected int[] |
m_Distribution
Distribution of the attribute value in the train dataset |
protected int |
m_MissingMode
missing value treatment |
protected double |
m_MissingProb
Probability of test attribute transforming into train attribute with missing value |
protected int |
m_NumAttributes
The number of attributes |
protected int |
m_NumClasses
The number of class values |
protected int |
m_NumInstances
The number of instances in the dataset |
protected int[][] |
m_RandClassCols
Set of colomns: each colomn representing a randomised version of the train dataset class colomn |
protected double |
m_SmallestProb
Smallest probability of test attribute transforming into train attribute |
protected double |
m_Stop
The stop parameter |
protected Instance |
m_Test
The test instance |
protected int |
m_TotalCount
Number of trai instances with no missing attribute values |
protected Instance |
m_Train
The train instance |
protected Instances |
m_TrainSet
The training instances used for classification. |
Fields inherited from interface weka.classifiers.lazy.kstar.KStarConstants |
B_ENTROPY, B_SPHERE, EPSILON, FLOOR, FLOOR1, INITIAL_STEP, LOG2, M_AVERAGE, M_DELETE, M_MAXDIFF, M_NORMAL, NUM_RAND_COLS, OFF, ON, ROOT_FINDER_ACCURACY, ROOT_FINDER_MAX_ITER |
Constructor Summary | |
KStarNominalAttribute(Instance test,
Instance train,
int attrIndex,
Instances trainSet,
int[][] randClassCol,
KStarCache cache)
Constructor |
Method Summary | |
private void |
calculateEntropy(double stop,
KStarWrapper params)
Calculates the entropy of the actual class prediction and the entropy for random class prediction. |
private void |
calculateSphereSize(int testvalue,
double stop,
KStarWrapper params)
Calculates the size of the "sphere of influence" defined as: sphere = sum(P^2)/sum(P)^2 P(i|j) = (1-tstop)*P(i) + ((i==j)? |
private void |
generateAttrDistribution()
Calculates the distribution, in the dataset, of the indexed nominal attribute values. |
private void |
init()
Initializes the m_Attributes of the class. |
private double |
PStar(Instance test,
Instance train,
int col,
double stop)
Calculates the nominal probability function defined as: P(i|j) = (1-stop) * P(i) + ((i==j) ? |
void |
setOptions(int missingmode,
int blendmethod,
int blendfactor)
Sets the options. |
private double |
stopProbUsingBlend()
Calculates the "stop parameter" for this attribute using the blend method: the value is computed using a root finder algorithm. |
private double |
stopProbUsingEntropy()
Calculates the "stop parameter" for this attribute using the entropy method: the value is computed using a root finder algorithm. |
double |
transProb()
Calculates the probability of the indexed nominal attribute of the test instance transforming into the indexed nominal attribute of the training instance. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
protected Instances m_TrainSet
protected Instance m_Test
protected Instance m_Train
protected int m_AttrIndex
protected double m_Stop
protected double m_MissingProb
protected double m_AverageProb
protected double m_SmallestProb
protected int m_TotalCount
protected int[] m_Distribution
protected int[][] m_RandClassCols
protected KStarCache m_Cache
protected int m_NumInstances
protected int m_NumClasses
protected int m_NumAttributes
protected int m_ClassType
protected int m_MissingMode
protected int m_BlendMethod
protected int m_BlendFactor
Constructor Detail |
public KStarNominalAttribute(Instance test, Instance train, int attrIndex, Instances trainSet, int[][] randClassCol, KStarCache cache)
Method Detail |
private void init()
public double transProb()
private double stopProbUsingEntropy()
private void calculateEntropy(double stop, KStarWrapper params)
stop
- the stop parameterparams
- the object wrapper for the parameters:
actual entropy, random entropy, average probability and smallest
probability.
private double stopProbUsingBlend()
private void calculateSphereSize(int testvalue, double stop, KStarWrapper params)
stop
- the stop parameterparams
- a wrapper of the parameters to be computed:
"sphere" the sphere size
"avgprob" the average transformation probability
"minProb" the smallest transformation probability
private double PStar(Instance test, Instance train, int col, double stop)
test
- the test instancetrain
- the train instancecol
- the attribute index
private void generateAttrDistribution()
public void setOptions(int missingmode, int blendmethod, int blendfactor)
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |