Package | Description |
---|---|
de.lmu.ifi.dbs.elki.data.synthetic.bymodel |
Generator using a distribution model specified in an XML configuration file.
|
de.lmu.ifi.dbs.elki.datasource.filter |
Data filtering, in particular for normalization and projection.
|
de.lmu.ifi.dbs.elki.math.statistics.distribution |
Standard distributions, with random generation functionalities.
|
Class and Description |
---|
DistributionWithRandom
Distribution that also has support for generating random numbers.
|
Class and Description |
---|
ExponentialDistribution
Exponential distribution.
|
Class and Description |
---|
ChiSquaredDistribution
Chi-Squared distribution (a specialization of the Gamma distribution).
|
Distribution
Statistical distributions, with their common functions.
|
DistributionEstimator
Estimate distribution parameters from a sample.
|
DistributionWithRandom
Distribution that also has support for generating random numbers.
|
ExponentiallyModifiedGaussianDistribution
Exponentially modified Gaussian (EMG) distribution (ExGaussian distribution)
is a combination of a normal distribution and an exponential distribution.
|
ExponentiallyModifiedGaussianDistribution.OlivierNorbergEstimator
Naive distribution estimation using mean and sample variance.
|
GammaDistribution
Gamma Distribution, with random generation and density functions.
|
GammaDistribution.ChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
GammaDistribution.MADEstimator
Robust parameter estimation for the Gamma distribution.
|
GammaDistribution.NaiveEstimator
Simple parameter estimation for the Gamma distribution.
|
LogGammaDistribution
Gamma Distribution, with random generation and density functions.
|
LogGammaDistribution.ChoiWetteEstimator
Estimate distribution parameters using the method by Choi and Wette.
|
LogGammaDistribution.MADEstimator
Robust parameter estimation for the LogGamma distribution.
|
LogGammaDistribution.NaiveEstimator
Simple parameter estimation for the Gamma distribution.
|
LogNormalDistribution
Log-Normal distribution.
|
LogNormalDistribution.LevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
LogNormalDistribution.MADEstimator
Estimator using Medians.
|
LogNormalDistribution.NaiveEstimator
Naive distribution estimation using mean and sample variance.
|
NormalDistribution
Gaussian distribution aka normal distribution
|
NormalDistribution.LevenbergMarquardtKDEEstimator
Distribution parameter estimation using Levenberg-Marquardt iterative
optimization and a kernel density estimation.
|
NormalDistribution.MADEstimator
Estimator using Medians.
|
NormalDistribution.NaiveEstimator
Naive distribution estimation using mean and sample variance.
|
UniformDistribution
Uniform distribution.
|
UniformDistribution.NaiveMinMaxEstimator
Estimate the uniform distribution by computing min and max.
|
UniformDistribution.RefinedMinMaxEstimator
Slightly improved estimation, that takes sample size into account.
|