| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceBasedAlgorithm<O,D extends Distance<D>,R extends Result>
Provides an abstract algorithm already setting the distance function. 
 | 
static class  | 
AbstractDistanceBasedAlgorithm.Parameterizer<O,D extends Distance<D>>
Parameterization helper class. 
 | 
class  | 
AbstractPrimitiveDistanceBasedAlgorithm<O,D extends Distance<?>,R extends Result>
Provides an abstract algorithm already setting the distance function. 
 | 
static class  | 
AbstractPrimitiveDistanceBasedAlgorithm.Parameterizer<O,D extends Distance<D>>
Parameterization helper class. 
 | 
class  | 
DependencyDerivator<V extends NumberVector<?>,D extends Distance<D>>
 Dependency derivator computes quantitatively linear dependencies among
 attributes of a given dataset based on a linear correlation PCA. 
 | 
static class  | 
DependencyDerivator.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
KNNDistanceOrder<O,D extends Distance<D>>
Provides an order of the kNN-distances for all objects within the database. 
 | 
static class  | 
KNNDistanceOrder.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
KNNJoin<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Joins in a given spatial database to each object its k-nearest neighbors. 
 | 
static class  | 
KNNJoin.Parameterizer<V extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
KNNJoin.Task.mindist
Minimum distance. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNBenchmarkAlgorithm<O,D extends Distance<D>>
Benchmarking algorithm that computes the k nearest neighbors for each query
 point. 
 | 
static class  | 
KNNBenchmarkAlgorithm.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
class  | 
ValidateApproximativeKNNIndex<O,D extends Distance<D>>
Algorithm to validate the quality of an approximative kNN index, by
 performing a number of queries and comparing them to the results obtained by
 exact indexing (e.g. linear scanning). 
 | 
static class  | 
ValidateApproximativeKNNIndex.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
AbstractProjectedDBSCAN.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
CanopyPreClustering<O,D extends Distance<D>>
Canopy pre-clustering is a simple preprocessing step for clustering. 
 | 
static class  | 
CanopyPreClustering.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
class  | 
DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected
 sets in a database. 
 | 
static class  | 
DBSCAN.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
DeLiClu<NV extends NumberVector<?>,D extends Distance<D>>
DeLiClu provides the DeLiClu algorithm, a hierarchical algorithm to find
 density-connected sets in a database. 
 | 
static class  | 
DeLiClu.Parameterizer<NV extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
OPTICS<O,D extends Distance<D>>
OPTICS provides the OPTICS algorithm. 
 | 
static class  | 
OPTICS.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
interface  | 
OPTICSTypeAlgorithm<D extends Distance<D>>
Interface for OPTICS type algorithms, that can be analysed by OPTICS Xi etc. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
DeLiClu.SpatialObjectPair.distance
The current distance. 
 | 
private D | 
OPTICS.epsilon
Hold the value of  
OPTICS.EPSILON_ID. | 
protected D | 
OPTICS.Parameterizer.epsilon  | 
private D | 
DBSCAN.epsilon
Holds the value of  
DBSCAN.EPSILON_ID. | 
protected D | 
DBSCAN.Parameterizer.epsilon  | 
protected D | 
AbstractProjectedDBSCAN.Parameterizer.epsilon  | 
private D | 
CanopyPreClustering.t1
Threshold for inclusion 
 | 
private D | 
CanopyPreClustering.Parameterizer.t1
Threshold for inclusion 
 | 
private D | 
CanopyPreClustering.t2
Threshold for removal 
 | 
private D | 
CanopyPreClustering.Parameterizer.t2
Threshold for removal 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
COPAC<V extends NumberVector<?>,D extends Distance<D>>
Provides the COPAC algorithm, an algorithm to partition a database according
 to the correlation dimension of its objects and to then perform an arbitrary
 clustering algorithm over the partitions. 
 | 
static class  | 
COPAC.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EpsilonNeighborPredicate<O,D extends Distance<D>>
The default DBSCAN and OPTICS neighbor predicate, using an
 epsilon-neighborhood. 
 | 
static class  | 
EpsilonNeighborPredicate.Instance<D extends Distance<D>>
Instance for a particular data set. 
 | 
static class  | 
EpsilonNeighborPredicate.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
EpsilonNeighborPredicate.epsilon
Range to query with 
 | 
(package private) D | 
EpsilonNeighborPredicate.Instance.epsilon
Range to query with 
 | 
(package private) D | 
EpsilonNeighborPredicate.Parameterizer.epsilon
Range to query with 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ExtractFlatClusteringFromHierarchy<D extends Distance<D>>
Extract a flat clustering from a full hierarchy, represented in pointer form. 
 | 
private static class  | 
ExtractFlatClusteringFromHierarchy.CompareByLambda<D extends Distance<D>>
Order a DBID collection by the lambda value. 
 | 
static class  | 
ExtractFlatClusteringFromHierarchy.Parameterizer<D extends Distance<D>>
Parameterization class. 
 | 
interface  | 
HierarchicalClusteringAlgorithm<D extends Distance<D>>
Interface for hierarchical clustering algorithms. 
 | 
class  | 
PointerHierarchyRepresentationResult<D extends Distance<D>>
The pointer representation of a hierarchical clustering. 
 | 
class  | 
SLINK<O,D extends Distance<D>>
Implementation of the efficient Single-Link Algorithm SLINK of R. 
 | 
static class  | 
SLINK.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
ExtractFlatClusteringFromHierarchy.threshold
Threshold for extracting clusters. 
 | 
(package private) D | 
ExtractFlatClusteringFromHierarchy.Parameterizer.threshold
Threshold level. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations. 
 | 
class  | 
KMeansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using Lloyd-style bulk iterations. 
 | 
static class  | 
KMeansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
KMeansMacQueen<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-means algorithm, using MacQueen style incremental updates. 
 | 
static class  | 
KMeansMacQueen.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
KMediansLloyd<V extends NumberVector<?>,D extends Distance<D>>
Provides the k-medians clustering algorithm, using Lloyd-style bulk
 iterations. 
 | 
static class  | 
KMediansLloyd.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDBOutlier<O,D extends Distance<D>>
Simple distance based outlier detection algorithms. 
 | 
static class  | 
AbstractDBOutlier.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
DBOutlierDetection<O,D extends Distance<D>>
Simple distanced based outlier detection algorithm. 
 | 
static class  | 
DBOutlierDetection.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
DBOutlierScore<O,D extends Distance<D>>
Compute percentage of neighbors in the given neighborhood with size d. 
 | 
static class  | 
DBOutlierScore.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
ODIN<O,D extends Distance<D>>
Outlier detection based on the in-degree of the kNN graph. 
 | 
static class  | 
ODIN.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
AbstractDBOutlier.d
Holds the value of  
AbstractDBOutlier.D_ID. | 
protected D | 
AbstractDBOutlier.Parameterizer.d
Query radius 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PrecomputedKNearestNeighborNeighborhood<D extends Distance<D>>
Neighborhoods based on k nearest neighbors. 
 | 
static class  | 
PrecomputedKNearestNeighborNeighborhood.Factory<O,D extends Distance<D>>
Factory class to instantiate for a particular relation. 
 | 
static class  | 
PrecomputedKNearestNeighborNeighborhood.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DendrogramModel<D extends Distance<D>>
Model for dendrograms, provides the distance to the child cluster. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
DendrogramModel.distance
Distance to child cluster 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <O,D extends Distance<D>>  | 
QueryUtil.getDistanceQuery(Database database,
                DistanceFunction<? super O,D> distanceFunction,
                Object... hints)
Get a distance query for a given distance function, automatically choosing
 a relation. 
 | 
<O,D extends Distance<D>>  | 
Database.getDistanceQuery(Relation<O> relation,
                DistanceFunction<? super O,D> distanceFunction,
                Object... hints)
Get the distance query for a particular distance function. 
 | 
<O,D extends Distance<D>>  | 
AbstractDatabase.getDistanceQuery(Relation<O> objQuery,
                DistanceFunction<? super O,D> distanceFunction,
                Object... hints)  | 
static <O,D extends Distance<D>>  | 
QueryUtil.getKNNQuery(Database database,
           DistanceFunction<? super O,D> distanceFunction,
           Object... hints)
Get a KNN query object for the given distance function. 
 | 
<O,D extends Distance<D>>  | 
Database.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)
Get a KNN query object for the given distance query. 
 | 
<O,D extends Distance<D>>  | 
AbstractDatabase.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
static <O,D extends Distance<D>>  | 
QueryUtil.getKNNQuery(Relation<O> relation,
           DistanceFunction<? super O,D> distanceFunction,
           Object... hints)
Get a KNN query object for the given distance function. 
 | 
static <O,D extends Distance<D>>  | 
QueryUtil.getLinearScanKNNQuery(DistanceQuery<O,D> distanceQuery)
Get a linear scan query for the given distance query. 
 | 
static <O,D extends Distance<D>>  | 
QueryUtil.getLinearScanRangeQuery(DistanceQuery<O,D> distanceQuery)
Get a linear scan query for the given distance query. 
 | 
static <O,D extends Distance<D>>  | 
QueryUtil.getRangeQuery(Database database,
             DistanceFunction<? super O,D> distanceFunction,
             Object... hints)
Get a range query object for the given distance function. 
 | 
<O,D extends Distance<D>>  | 
Database.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)
Get a range query object for the given distance query. 
 | 
<O,D extends Distance<D>>  | 
AbstractDatabase.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
static <O,D extends Distance<D>>  | 
QueryUtil.getRangeQuery(Relation<O> relation,
             DistanceFunction<? super O,D> distanceFunction,
             Object... hints)
Get a range query object for the given distance function. 
 | 
<O,D extends Distance<D>>  | 
Database.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)
Get a rKNN query object for the given distance query. 
 | 
<O,D extends Distance<D>>  | 
AbstractDatabase.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)  | 
static <O,D extends Distance<D>>  | 
QueryUtil.getRKNNQuery(Relation<O> relation,
            DistanceFunction<? super O,D> distanceFunction,
            Object... hints)
Get a rKNN query object for the given distance function. 
 | 
static <O,D extends Distance<D>>  | 
QueryUtil.getSimilarityQuery(Database database,
                  SimilarityFunction<? super O,D> similarityFunction,
                  Object... hints)
Get a similarity query, automatically choosing a relation. 
 | 
<O,D extends Distance<D>>  | 
Database.getSimilarityQuery(Relation<O> relation,
                  SimilarityFunction<? super O,D> similarityFunction,
                  Object... hints)
Get the similarity query for a particular similarity function. 
 | 
<O,D extends Distance<D>>  | 
AbstractDatabase.getSimilarityQuery(Relation<O> objQuery,
                  SimilarityFunction<? super O,D> similarityFunction,
                  Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
DBIDFactory.newDistancePair(D val,
               DBIDRef id)
Make a new distance-DBID pair. 
 | 
static <D extends Distance<D>>  | 
DBIDUtil.newDistancePair(D dist,
               DBIDRef id)
Make a DistanceDBIDPair. 
 | 
<D extends Distance<D>>  | 
DBIDFactory.newHeap(D factory,
       int k)
Create an appropriate heap for the distance function. 
 | 
static <D extends Distance<D>>  | 
DBIDUtil.newHeap(D distancetype,
       int k)
Create an appropriate heap for the distance type. 
 | 
<D extends Distance<D>>  | 
DBIDFactory.newHeap(KNNList<D> exist)
Build a new heap from a given list. 
 | 
static <D extends Distance<D>>  | 
DBIDUtil.newHeap(KNNList<D> exist)
Build a new heap from a given list. 
 | 
static <D extends Distance<D>>  | 
DBIDUtil.subList(KNNList<D> list,
       int k)
Get a subset of the KNN result. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DistanceDBIDList<D extends Distance<D>>
Collection of objects and their distances. 
 | 
interface  | 
DistanceDBIDListIter<D extends Distance<D>>
Iterator over distance-based query results. 
 | 
interface  | 
DistanceDBIDPair<D extends Distance<D>>
Pair containing a distance an an object ID
 
 Note: there is no getter for the object, as this is a  
DBIDRef. | 
interface  | 
KNNHeap<D extends Distance<D>>
Interface for kNN heaps. 
 | 
interface  | 
KNNList<D extends Distance<D>>
Interface for kNN results. 
 | 
interface  | 
ModifiableDistanceDBIDList<D extends Distance<D>>
Modifiable API for Distance-DBID results 
 | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
AbstractKNNHeap<P extends DistanceDBIDPair<D>,D extends Distance<D>>
Heap used for KNN management. 
 | 
class  | 
DistanceDBIDPairKNNHeap<D extends Distance<D>>
Heap for collecting kNN candidates with arbitrary distance types. 
 | 
class  | 
DistanceDBIDPairKNNList<D extends Distance<D>>
Finalized KNN List. 
 | 
class  | 
GenericDistanceDBIDList<D extends Distance<D>>
Default class to keep a list of distance-object pairs. 
 | 
class  | 
KNNSubList<D extends Distance<D>>
Sublist of an existing result to contain only the first k elements. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected D | 
DistanceDBIDPairKNNHeap.knndistance
Cached distance to k nearest neighbor (to avoid going through  
AbstractKNNHeap.peek()
 each time). | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
DistanceIntegerDBIDPair<D extends Distance<D>>
Class storing a double distance a DBID. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
DistanceIntegerDBIDPair.distance
The distance value. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
AbstractIntegerDBIDFactory.newDistancePair(D val,
               DBIDRef id)  | 
<D extends Distance<D>>  | 
AbstractIntegerDBIDFactory.newHeap(D factory,
       int k)  | 
<D extends Distance<D>>  | 
AbstractIntegerDBIDFactory.newHeap(KNNList<D> exist)  | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DistanceSimilarityQuery<O,D extends Distance<D>>
Interface that is a combination of distance and a similarity function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDatabaseDistanceQuery<O,D extends Distance<D>>
Run a database query in a database context. 
 | 
class  | 
AbstractDistanceQuery<O,D extends Distance<D>>
A distance query serves as adapter layer for database and primitive
 distances. 
 | 
class  | 
DBIDDistanceQuery<D extends Distance<D>>
Run a distance query based on DBIDs 
 | 
interface  | 
DistanceQuery<O,D extends Distance<?>>
A distance query serves as adapter layer for database and primitive distances. 
 | 
class  | 
PrimitiveDistanceQuery<O,D extends Distance<D>>
Run a database query in a database context. 
 | 
class  | 
PrimitiveDistanceSimilarityQuery<O,D extends Distance<D>>
Combination query class, for convenience. 
 | 
interface  | 
SpatialDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
Query interface for spatial distance queries. 
 | 
class  | 
SpatialPrimitiveDistanceQuery<V extends SpatialComparable,D extends Distance<D>>
Distance query for spatial distance functions 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceKNNQuery<O,D extends Distance<D>>
Instance for the query on a particular database. 
 | 
interface  | 
KNNQuery<O,D extends Distance<D>>
The interface of an actual instance. 
 | 
class  | 
LinearScanKNNQuery<O,D extends Distance<D>>
Instance of this query for a particular database. 
 | 
class  | 
LinearScanPrimitiveDistanceKNNQuery<O,D extends Distance<D>>
Instance of this query for a particular database. 
 | 
class  | 
PreprocessorKNNQuery<O,D extends Distance<D>,T extends KNNList<D>>
Instance for a particular database, invoking the preprocessor. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistanceRangeQuery<O,D extends Distance<D>>
Abstract base class for range queries that use a distance query in their
 instance 
 | 
class  | 
LinearScanPrimitiveDistanceRangeQuery<O,D extends Distance<D>>
Default linear scan range query class. 
 | 
class  | 
LinearScanRangeQuery<O,D extends Distance<D>>
Default linear scan range query class. 
 | 
interface  | 
RangeQuery<O,D extends Distance<D>>
The interface for range queries 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractRKNNQuery<O,D extends Distance<D>>
Instance for the query on a particular database. 
 | 
class  | 
LinearScanRKNNQuery<O,D extends Distance<D>>
Default linear scan RKNN query class. 
 | 
class  | 
PreprocessorRKNNQuery<O,D extends Distance<D>>
Instance for a particular database, invoking the preprocessor. 
 | 
interface  | 
RKNNQuery<O,D extends Distance<D>>
Abstract reverse kNN Query interface. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDBIDSimilarityQuery<O,D extends Distance<D>>
Run a database query in a database context. 
 | 
class  | 
AbstractSimilarityQuery<O,D extends Distance<D>>
A distance query serves as adapter layer for database and primitive
 similarity functions. 
 | 
class  | 
PrimitiveSimilarityQuery<O,D extends Distance<D>>
Run a database query in a database context. 
 | 
interface  | 
SimilarityQuery<O,D extends Distance<?>>
A similarity query serves as adapter layer for database and primitive
 similarity functions. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <D extends Distance<D>>  | 
DistanceUtil.max(D d1,
   D d2)
Returns the maximum of the given Distances or the first, if none is greater
 than the other one. 
 | 
static <D extends Distance<D>>  | 
DistanceUtil.min(D d1,
   D d2)
Returns the minimum of the given Distances or the first, if none is less
 than the other one. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDatabaseDistanceFunction<O,D extends Distance<D>>
Abstract super class for distance functions needing a database context. 
 | 
static class  | 
AbstractDatabaseDistanceFunction.Instance<O,D extends Distance<D>>
The actual instance bound to a particular database. 
 | 
class  | 
AbstractDBIDDistanceFunction<D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. 
 | 
class  | 
AbstractIndexBasedDistanceFunction<O,I extends Index,D extends Distance<D>>
Abstract super class for distance functions needing a database index. 
 | 
static class  | 
AbstractIndexBasedDistanceFunction.Instance<O,I extends Index,D extends Distance<D>,F extends DistanceFunction<? super O,D>>
The actual instance bound to a particular database. 
 | 
class  | 
AbstractPrimitiveDistanceFunction<O,D extends Distance<D>>
AbstractDistanceFunction provides some methods valid for any extending class. 
 | 
interface  | 
DBIDDistanceFunction<D extends Distance<?>>
Distance functions valid in a database context only (i.e. for DBIDs)
 
 For any "distance" that cannot be computed for arbitrary objects, only those
 that exist in the database and referenced by their ID. 
 | 
interface  | 
DistanceFunction<O,D extends Distance<?>>
Base interface for any kind of distances. 
 | 
interface  | 
FilteredLocalPCABasedDistanceFunction<O extends NumberVector<?>,P extends FilteredLocalPCAIndex<? super O>,D extends Distance<D>>
Interface for local PCA based preprocessors. 
 | 
static interface  | 
FilteredLocalPCABasedDistanceFunction.Instance<T extends NumberVector<?>,I extends Index,D extends Distance<D>>
Instance produced by the distance function. 
 | 
interface  | 
IndexBasedDistanceFunction<O,D extends Distance<D>>
Distance function relying on an index (such as preprocessed neighborhoods). 
 | 
static interface  | 
IndexBasedDistanceFunction.Instance<T,I extends Index,D extends Distance<D>>
Instance interface for Index based distance functions. 
 | 
class  | 
MinKDistance<O,D extends Distance<D>>
A distance that is at least the distance to the kth nearest neighbor. 
 | 
static class  | 
MinKDistance.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
interface  | 
Norm<O,D extends Distance<D>>
Abstract interface for a mathematical norm. 
 | 
interface  | 
NumberVectorDistanceFunction<D extends Distance<D>>
Base interface for the common case of distance functions defined on numerical vectors. 
 | 
interface  | 
PrimitiveDistanceFunction<O,D extends Distance<?>>
Primitive distance function that is defined on some kind of object. 
 | 
class  | 
ProxyDistanceFunction<O,D extends Distance<D>>
Distance function to proxy computations to another distance (that probably
 was run before). 
 | 
interface  | 
SpatialPrimitiveDistanceFunction<V extends SpatialComparable,D extends Distance<D>>
API for a spatial primitive distance function. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <O,D extends Distance<D>>  | 
ProxyDistanceFunction.proxy(DistanceQuery<O,D> inner)
Static method version. 
 | 
static <V,T extends V,D extends Distance<D>>  | 
ProxyDistanceFunction.unwrapDistance(DistanceFunction<V,D> dfun)
Helper function, to resolve any wrapped Proxy Distances 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DistanceParser<D extends Distance<D>>
A DistanceParser shall provide a DistanceParsingResult by parsing an InputStream. 
 | 
class  | 
DistanceParsingResult<D extends Distance<D>>
Provides a cache of precomputed distances between the database objects. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DimensionSelectingSubspaceDistanceFunction<O,D extends Distance<D>>
Interface for dimension selecting subspace distance functions. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
Distance<D extends Distance<D>>
The interface Distance defines the requirements of any instance class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDistance<D extends AbstractDistance<D>>
An abstract distance implements equals conveniently for any extending class. 
 | 
class  | 
BitDistance
Provides a Distance for a bit-valued distance. 
 | 
class  | 
CorrelationDistance<D extends CorrelationDistance<D>>
The correlation distance is a special Distance that indicates the
 dissimilarity between correlation connected objects. 
 | 
class  | 
DoubleDistance
Provides a Distance for a double-valued distance. 
 | 
class  | 
FloatDistance
Provides a Distance for a float-valued distance. 
 | 
class  | 
IntegerDistance
Provides an integer distance value. 
 | 
class  | 
NumberDistance<D extends NumberDistance<D,N>,N extends Number>
Provides a Distance for a number-valued distance. 
 | 
class  | 
PCACorrelationDistance
The correlation distance is a special Distance that indicates the
 dissimilarity between correlation connected objects. 
 | 
class  | 
PreferenceVectorBasedCorrelationDistance
A PreferenceVectorBasedCorrelationDistance holds additionally to the
 CorrelationDistance the common preference vector of the two objects defining
 the distance. 
 | 
class  | 
SubspaceDistance
The subspace distance is a special distance that indicates the dissimilarity
 between subspaces of equal dimensionality. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDBIDSimilarityFunction<D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. 
 | 
class  | 
AbstractIndexBasedSimilarityFunction<O,I extends Index,R,D extends Distance<D>>
Abstract super class for distance functions needing a preprocessor. 
 | 
static class  | 
AbstractIndexBasedSimilarityFunction.Instance<O,I extends Index,R,D extends Distance<D>>
The actual instance bound to a particular database. 
 | 
class  | 
AbstractPrimitiveSimilarityFunction<O,D extends Distance<D>>
Base implementation of a similarity function. 
 | 
interface  | 
DBIDSimilarityFunction<D extends Distance<D>>
Interface DBIDSimilarityFunction describes the requirements of any similarity
 function defined over object IDs. 
 | 
interface  | 
IndexBasedSimilarityFunction<O,D extends Distance<D>>
Interface for preprocessor/index based similarity functions. 
 | 
static interface  | 
IndexBasedSimilarityFunction.Instance<T,I extends Index,D extends Distance<D>>
Instance interface for index/preprocessor based distance functions. 
 | 
interface  | 
NormalizedPrimitiveSimilarityFunction<O,D extends Distance<D>>
Marker interface for similarity functions working on primitive objects, and
 limited to the 0-1 value range. 
 | 
interface  | 
NormalizedSimilarityFunction<O,D extends Distance<?>>
Marker interface to signal that the similarity function is normalized to
 produce values in the range of [0:1]. 
 | 
interface  | 
PrimitiveSimilarityFunction<O,D extends Distance<D>>
Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
interface  | 
SimilarityFunction<O,D extends Distance<?>>
Interface SimilarityFunction describes the requirements of any similarity
 function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
ROC.DistanceResultAdapter<D extends Distance<D>>
This adapter can be used for an arbitrary collection of Integers, and uses
 that id1.compareTo(id2) ! 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
ROC.DistanceResultAdapter.prevDist
Distance of previous. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <D extends Distance<D>>  | 
ROC.computeROCAUCDistanceResult(int size,
                           Cluster<?> clus,
                           DistanceDBIDList<D> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. 
 | 
static <D extends Distance<D>>  | 
ROC.computeROCAUCDistanceResult(int size,
                           DBIDs ids,
                           DistanceDBIDList<D> nei)
Compute a ROC curves Area-under-curve for a QueryResult and a Cluster. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractRefiningIndex.AbstractKNNQuery<D extends Distance<D>>
KNN query for this index. 
 | 
class  | 
AbstractRefiningIndex.AbstractRangeQuery<D extends Distance<D>>
Range query for this index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
KNNIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)
Get a KNN query object for the given distance query and k. 
 | 
<D extends Distance<D>>  | 
RangeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)
Get a range query object for the given distance query and k. 
 | 
<D extends Distance<D>>  | 
RKNNIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)
Get a KNN query object for the given distance query and k. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
protected class  | 
InMemoryLSHIndex.Instance.LSHKNNQuery<D extends Distance<D>>
Class for handling kNN queries against the LSH index. 
 | 
protected class  | 
InMemoryLSHIndex.Instance.LSHRangeQuery<D extends Distance<D>>
Class for handling kNN queries against the LSH index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
InMemoryLSHIndex.Instance.getKNNQuery(DistanceQuery<V,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
InMemoryLSHIndex.Instance.getRangeQuery(DistanceQuery<V,D> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMaterializeKNNPreprocessor<O,D extends Distance<D>,T extends KNNList<D>>
Abstract base class for KNN Preprocessors. 
 | 
static class  | 
AbstractMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>,T extends KNNList<D>>
The parameterizable factory. 
 | 
static class  | 
AbstractMaterializeKNNPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
KNNJoinMaterializeKNNPreprocessor<V extends NumberVector<?>,D extends Distance<D>>
Class to materialize the kNN using a spatial join on an R-tree. 
 | 
static class  | 
KNNJoinMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>>
The parameterizable factory. 
 | 
static class  | 
KNNJoinMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>>
Parameterization class 
 | 
class  | 
MaterializeKNNAndRKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors and the reverse k
 nearest neighbors (and their distances) to each database object. 
 | 
static class  | 
MaterializeKNNAndRKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. 
 | 
static class  | 
MaterializeKNNAndRKNNPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
MaterializeKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
static class  | 
MaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. 
 | 
static class  | 
MaterializeKNNPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
static class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
The parameterizable factory. 
 | 
static class  | 
MetricalIndexApproximationMaterializeKNNPreprocessor.Factory.Parameterizer<O extends NumberVector<?>,D extends Distance<D>,N extends Node<E>,E extends MTreeEntry>
Parameterization class. 
 | 
class  | 
PartitionApproximationMaterializeKNNPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
static class  | 
PartitionApproximationMaterializeKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. 
 | 
static class  | 
PartitionApproximationMaterializeKNNPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
RandomSampleKNNPreprocessor<O,D extends Distance<D>>
Class that computed the kNN only on a random sample. 
 | 
static class  | 
RandomSampleKNNPreprocessor.Factory<O,D extends Distance<D>>
The parameterizable factory. 
 | 
static class  | 
RandomSampleKNNPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class 
 | 
class  | 
SpatialApproximationMaterializeKNNPreprocessor<O extends NumberVector<?>,D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
A preprocessor for annotation of the k nearest neighbors (and their
 distances) to each database object. 
 | 
static class  | 
SpatialApproximationMaterializeKNNPreprocessor.Factory<D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
The actual preprocessor instance. 
 | 
static class  | 
SpatialApproximationMaterializeKNNPreprocessor.Factory.Parameterizer<D extends Distance<D>,N extends SpatialNode<N,E>,E extends SpatialEntry>
Parameterization class. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
AbstractMaterializeKNNPreprocessor.getKNNQuery(DistanceQuery<O,S> distQ,
           Object... hints)  | 
<S extends Distance<S>>  | 
MaterializeKNNAndRKNNPreprocessor.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SharedNearestNeighborPreprocessor<O,D extends Distance<D>>
A preprocessor for annotation of the ids of nearest neighbors to each
 database object. 
 | 
static class  | 
SharedNearestNeighborPreprocessor.Factory<O,D extends Distance<D>>
Factory class 
 | 
static class  | 
SharedNearestNeighborPreprocessor.Factory.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractSubspaceProjectionIndex<NV extends NumberVector<?>,D extends Distance<D>,P extends ProjectionResult>
Abstract base class for a local PCA based index. 
 | 
static class  | 
AbstractSubspaceProjectionIndex.Factory<NV extends NumberVector<?>,D extends Distance<D>,I extends AbstractSubspaceProjectionIndex<NV,D,?>>
Factory class 
 | 
static class  | 
AbstractSubspaceProjectionIndex.Factory.Parameterizer<NV extends NumberVector<?>,D extends Distance<D>,C>
Parameterization class. 
 | 
class  | 
FourCSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>
Preprocessor for 4C local dimensionality and locally weighted matrix
 assignment to objects of a certain database. 
 | 
static class  | 
FourCSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>
Factory class for 4C preprocessors. 
 | 
static class  | 
FourCSubspaceIndex.Factory.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
class  | 
PreDeConSubspaceIndex<V extends NumberVector<?>,D extends Distance<D>>
Preprocessor for PreDeCon local dimensionality and locally weighted matrix
 assignment to objects of a certain database. 
 | 
static class  | 
PreDeConSubspaceIndex.Factory<V extends NumberVector<?>,D extends Distance<D>>
Factory. 
 | 
static class  | 
PreDeConSubspaceIndex.Factory.Parameterizer<V extends NumberVector<?>,D extends Distance<D>>
Parameterization class. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected D | 
AbstractSubspaceProjectionIndex.epsilon
Contains the value of parameter epsilon; 
 | 
protected D | 
AbstractSubspaceProjectionIndex.Factory.epsilon
Contains the value of parameter epsilon; 
 | 
protected D | 
AbstractSubspaceProjectionIndex.Factory.Parameterizer.epsilon
Contains the value of parameter epsilon; 
 | 
| Modifier and Type | Class and Description | 
|---|---|
(package private) class  | 
ProjectedIndex.ProjectedKNNQuery<D extends Distance<D>>
Class to proxy kNN queries. 
 | 
(package private) class  | 
ProjectedIndex.ProjectedRangeQuery<D extends Distance<D>>
Class to proxy range queries. 
 | 
(package private) class  | 
ProjectedIndex.ProjectedRKNNQuery<D extends Distance<D>>
Class to proxy RkNN queries. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
LatLngAsECEFIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
ProjectedIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
LngLatAsECEFIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
LatLngAsECEFIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
<D extends Distance<D>>  | 
ProjectedIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
<D extends Distance<D>>  | 
LngLatAsECEFIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
<D extends Distance<D>>  | 
LatLngAsECEFIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)  | 
<D extends Distance<D>>  | 
ProjectedIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)  | 
<D extends Distance<D>>  | 
LngLatAsECEFIndex.getRKNNQuery(DistanceQuery<O,D> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MetricalIndexTree<O,D extends Distance<D>,N extends Node<E>,E extends Entry>
Abstract super class for all metrical index classes. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
MkAppTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
           Object... hints)  | 
<S extends Distance<S>>  | 
MkAppTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
             Object... hints)  | 
<S extends Distance<S>>  | 
MkAppTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
MkCoPTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
           Object... hints)  | 
<S extends Distance<S>>  | 
MkCoPTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
             Object... hints)  | 
<S extends Distance<S>>  | 
MkCoPTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
MkMaxTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
           Object... hints)  | 
<S extends Distance<S>>  | 
MkMaxTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
             Object... hints)  | 
<S extends Distance<S>>  | 
MkMaxTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
MkTabTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
           Object... hints)  | 
<S extends Distance<S>>  | 
MkTabTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
             Object... hints)  | 
<S extends Distance<S>>  | 
MkTabTreeIndex.getRKNNQuery(DistanceQuery<O,S> distanceQuery,
            Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<S extends Distance<S>>  | 
MTreeIndex.getKNNQuery(DistanceQuery<O,S> distanceQuery,
           Object... hints)  | 
<S extends Distance<S>>  | 
MTreeIndex.getRangeQuery(DistanceQuery<O,S> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GenericDistanceSearchCandidate<D extends Distance<D>>
Candidate for expansion in a distance search (generic implementation). 
 | 
| Modifier and Type | Field and Description | 
|---|---|
D | 
GenericDistanceSearchCandidate.mindist
Distance value 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
MinimalisticMemoryKDTree.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
MinimalisticMemoryKDTree.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
DeLiCluTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
DeLiCluTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GenericRStarTreeKNNQuery<O extends SpatialComparable,D extends Distance<D>>
Instance of a KNN query for a particular spatial index. 
 | 
class  | 
GenericRStarTreeRangeQuery<O extends SpatialComparable,D extends Distance<D>>
Instance of a range query for a particular spatial index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <O extends SpatialComparable,D extends Distance<D>>  | 
RStarTreeUtil.getKNNQuery(AbstractRStarTree<?,?,?> tree,
           SpatialDistanceQuery<O,D> distanceQuery,
           Object... hints)
Get an RTree knn query, using an optimized double implementation when
 possible. 
 | 
static <O extends SpatialComparable,D extends Distance<D>>  | 
RStarTreeUtil.getRangeQuery(AbstractRStarTree<?,?,?> tree,
             SpatialDistanceQuery<O,D> distanceQuery,
             Object... hints)
Get an RTree range query, using an optimized double implementation when
 possible. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
RStarTreeIndex.getKNNQuery(DistanceQuery<O,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
RStarTreeIndex.getRangeQuery(DistanceQuery<O,D> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Method and Description | 
|---|---|
<D extends Distance<D>>  | 
PartialVAFile.getKNNQuery(DistanceQuery<V,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
VAFile.getKNNQuery(DistanceQuery<V,D> distanceQuery,
           Object... hints)  | 
<D extends Distance<D>>  | 
PartialVAFile.getRangeQuery(DistanceQuery<V,D> distanceQuery,
             Object... hints)  | 
<D extends Distance<D>>  | 
VAFile.getRangeQuery(DistanceQuery<V,D> distanceQuery,
             Object... hints)  | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KNNDistanceOrderResult<D extends Distance<D>>
Wraps a list containing the knn distances. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusterOrderEntry<D extends Distance<D>>
Generic Cluster Order Entry Interface. 
 | 
class  | 
ClusterOrderResult<D extends Distance<D>>
Class to store the result of an ordering clustering algorithm such as OPTICS. 
 | 
class  | 
GenericClusterOrderEntry<D extends Distance<D>>
Provides an entry in a cluster order. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private D | 
GenericClusterOrderEntry.reachability
The reachability of the entry. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DistanceParameter<D extends Distance<D>>
Parameter class for a parameter specifying a double value. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) D | 
DistanceParameter.dist
Distance type 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
OPTICSDistanceAdapter<D extends Distance<D>>
Interface to map ClusterOrderEntries to double values to use in the OPTICS plot. 
 | 
class  | 
OPTICSPlot<D extends Distance<D>>
Class to produce an OPTICS plot image. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <D extends Distance<D>>  | 
OPTICSPlot.canPlot(ClusterOrderResult<D> co)
Test whether this class can produce an OPTICS plot for the given cluster
 order. 
 | 
private static <D extends Distance<D>>  | 
OPTICSPlot.getAdapterForDistance(ClusterOrderResult<D> co)
Try to find a distance adapter. 
 | 
static <D extends Distance<D>>  | 
OPTICSCut.makeOPTICSCut(ClusterOrderResult<D> co,
             OPTICSDistanceAdapter<D> adapter,
             double epsilon)
Compute an OPTICS cut clustering 
 | 
static <D extends Distance<D>>  | 
OPTICSPlot.plotForClusterOrder(ClusterOrderResult<D> co,
                   VisualizerContext context)
Static method to find an optics plot for a result, or to create a new one
 using the given context. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSProjection<D extends Distance<D>>
OPTICS projection. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
OPTICSProjector<D extends Distance<D>>
Projection for OPTICS plots. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractOPTICSVisualization<D extends Distance<D>>
Abstract base class for OPTICS visualizer 
 | 
class  | 
OPTICSClusterVisualization.Instance<D extends Distance<D>>
Instance. 
 | 
class  | 
OPTICSPlotCutVisualization.Instance<D extends Distance<D>>
Instance. 
 | 
class  | 
OPTICSPlotSelectionVisualization.Instance<D extends Distance<D>>
Instance. 
 | 
class  | 
OPTICSPlotVisualizer.Instance<D extends Distance<D>>
Instance. 
 | 
class  | 
OPTICSSteepAreaVisualization.Instance<D extends Distance<D>>
Instance 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ODIN<O,D extends Distance<D>>
Outlier detection based on the in-degree of the kNN graph. 
 | 
static class  | 
ODIN.Parameterizer<O,D extends Distance<D>>
Parameterization class. 
 |