| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier | 
 Outlier detection algorithms 
 | 
| de.lmu.ifi.dbs.elki.algorithm.outlier.meta | 
 Meta outlier detection algorithms: external scores, score rescaling. 
 | 
| de.lmu.ifi.dbs.elki.data.model | 
 Cluster models classes for various algorithms. 
 | 
| de.lmu.ifi.dbs.elki.database | 
 ELKI database layer - loading, storing, indexing and accessing data 
 | 
| de.lmu.ifi.dbs.elki.database.ids | 
 Database object identification and ID group handling API. 
 | 
| de.lmu.ifi.dbs.elki.database.ids.generic | 
 Database object identification and ID group handling - generic implementations. 
 | 
| de.lmu.ifi.dbs.elki.database.ids.integer | 
 Integer-based DBID implementation --
 do not use directly - always use  
DBIDUtil. | 
| de.lmu.ifi.dbs.elki.database.query.knn | 
 Prepared queries for k nearest neighbor (kNN) queries. 
 | 
| de.lmu.ifi.dbs.elki.database.query.rknn | 
 Prepared queries for reverse k nearest neighbor (rkNN) queries. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| de.lmu.ifi.dbs.elki.evaluation.similaritymatrix | 
 Render a distance matrix to visualize a clustering-distance-combination. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.knn | 
 Indexes providing KNN and rKNN data. 
 | 
| de.lmu.ifi.dbs.elki.index.preprocessed.snn | 
 Indexes providing nearest neighbor sets 
 | 
| de.lmu.ifi.dbs.elki.index.projected | 
 Projected indexes for data. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.metrical.mtreevariants.query | 
 Classes for performing queries (knn, range, ...) on metrical trees. 
 | 
| de.lmu.ifi.dbs.elki.index.tree.spatial.rstarvariants.query | 
 Queries on the R-Tree family of indexes: kNN and range queries. 
 | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | 
 Functions to compute the similarity of dimensions (or the interestingness of the combination). 
 | 
| de.lmu.ifi.dbs.elki.utilities | 
 Utility and helper classes - commonly used data structures, output formatting, exceptions, ... 
 | 
| de.lmu.ifi.dbs.elki.utilities.datastructures.arraylike | 
 Common API for accessing objects that are "array-like", including lists, numerical vectors, database vectors and arrays. 
 | 
| de.lmu.ifi.dbs.elki.utilities.scaling.outlier | 
 Scaling of Outlier scores, that require a statistical analysis of the occurring values 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected boolean | 
KMedoidsPAM.assignToNearestCluster(ArrayDBIDs means,
                      DBIDs ids,
                      WritableDoubleDataStore second,
                      List<? extends ModifiableDBIDs> clusters,
                      DistanceQuery<V,D> distQ)
Returns a list of clusters. 
 | 
protected boolean | 
KMedoidsEM.assignToNearestCluster(ArrayDBIDs means,
                      Mean[] mdist,
                      List<? extends ModifiableDBIDs> clusters,
                      DistanceQuery<V,D> distQ)
Returns a list of clusters. 
 | 
protected double | 
KMeansPlusPlusInitialMeans.initialWeights(double[] weights,
              ArrayDBIDs ids,
              DBID latest,
              DistanceQuery<? super V,D> distQ)
Initialize the weight list. 
 | 
protected double | 
KMeansPlusPlusInitialMeans.updateWeights(double[] weights,
             ArrayDBIDs ids,
             DBID latest,
             DistanceQuery<? super V,D> distQ)
Update the weight list. 
 | 
protected double | 
KMeansPlusPlusInitialMeans.updateWeights(double[] weights,
             ArrayDBIDs ids,
             DBID latest,
             PrimitiveDoubleDistanceFunction<V> distF,
             Relation<V> rel)
Update the weight list. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private ArrayDBIDs | 
ABOD.staticids
Static DBID map. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private ArrayList<ArrayDBIDs> | 
HiCS.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation)
Calculates "index structures" for every attribute, i.e. sorts a
 ModifiableArray of every DBID in the database for every dimension and
 stores them in a list 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
HiCS.calculateContrast(Relation<? extends NumberVector<?>> relation,
                 HiCS.HiCSSubspace subspace,
                 ArrayList<ArrayDBIDs> subspaceIndex,
                 Random random)
Calculates the actual contrast of a given subspace. 
 | 
private Set<HiCS.HiCSSubspace> | 
HiCS.calculateSubspaces(Relation<? extends NumberVector<?>> relation,
                  ArrayList<ArrayDBIDs> subspaceIndex,
                  Random random)
Identifies high contrast subspaces in a given full-dimensional database. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private ArrayDBIDs | 
Bicluster.rowIDs
The ids of the rows included in the bicluster. 
 | 
| Constructor and Description | 
|---|
Bicluster(ArrayDBIDs rowIDs,
         int[] colIDs,
         Relation<V> database)
Defines a new bicluster for given parameters. 
 | 
BiclusterWithInverted(ArrayDBIDs rowIDs,
                     int[] colIDs,
                     Relation<V> database)  | 
| Modifier and Type | Field and Description | 
|---|---|
private ArrayDBIDs | 
StaticArrayDatabase.ids
IDs of this database 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ArrayModifiableDBIDs
Array-oriented implementation of a modifiable DBID collection. 
 | 
interface  | 
ArrayStaticDBIDs
Unmodifiable, indexed DBIDs. 
 | 
interface  | 
DBID
Database ID object. 
 | 
interface  | 
DBIDRange
Static DBID range. 
 | 
interface  | 
DBIDVar
(Persistent) variable storing a DBID reference. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EmptyDBIDs
Empty DBID collection. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static ArrayDBIDs | 
DBIDUtil.ensureArray(DBIDs ids)
Ensure that the given DBIDs are array-indexable. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
UnmodifiableArrayDBIDs
Unmodifiable wrapper for DBIDs. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected ArrayDBIDs | 
MaskedDBIDs.data
Data storage. 
 | 
private ArrayDBIDs | 
UnmodifiableArrayDBIDs.inner
The DBIDs we wrap. 
 | 
| Constructor and Description | 
|---|
MaskedDBIDs(ArrayDBIDs data,
           BitSet bits,
           boolean inverse)
Constructor. 
 | 
UnmodifiableArrayDBIDs(ArrayDBIDs inner)
Constructor. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
IntegerArrayDBIDs
Trivial combination interface. 
 | 
interface  | 
IntegerArrayStaticDBIDs
Combination of  
ArrayStaticDBIDs and IntegerDBIDs. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ArrayModifiableIntegerDBIDs
Class using a primitive int[] array as storage. 
 | 
class  | 
ArrayStaticIntegerDBIDs
Static (no modifications allowed) set of Database Object IDs. 
 | 
(package private) class  | 
IntegerDBID
Database ID object. 
 | 
(package private) class  | 
IntegerDBIDRange
Representing a DBID range allocation. 
 | 
(package private) class  | 
IntegerDBIDVar
Variable for storing a single DBID reference. 
 | 
class  | 
TroveArrayDBIDs
Abstract base class for GNU Trove array based lists. 
 | 
(package private) class  | 
TroveArrayModifiableDBIDs
Class using a GNU Trove int array list as storage. 
 | 
class  | 
UnmodifiableIntegerArrayDBIDs
Unmodifiable wrapper for DBIDs. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<? extends KNNList<D>> | 
KNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)
Bulk query method 
 | 
List<KNNList<D>> | 
LinearScanPrimitiveDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
List<KNNList<D>> | 
LinearScanKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
List<KNNList<D>> | 
PreprocessorKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
List<? extends KNNList<D>> | 
AbstractDistanceKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
private void | 
LinearScanKNNQuery.linearScanBatchKNN(ArrayDBIDs ids,
                  List<KNNHeap<D>> heaps)
Linear batch knn for arbitrary distance functions. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<GenericDistanceDBIDList<D>> | 
LinearScanRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
                   int k)  | 
List<? extends DistanceDBIDList<D>> | 
PreprocessorRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
                   int k)  | 
List<? extends DistanceDBIDList<D>> | 
RKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
                   int k)
Bulk query method for reverse k nearest neighbors for ids. 
 | 
| Constructor and Description | 
|---|
KernelMatrix(PrimitiveSimilarityFunction<? super O,DoubleDistance> kernelFunction,
            Relation<? extends O> database,
            ArrayDBIDs ids)
Provides a new kernel matrix. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) ArrayDBIDs | 
ComputeSimilarityMatrixImage.SimilarityMatrix.ids
The database IDs used 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ArrayDBIDs | 
ComputeSimilarityMatrixImage.SimilarityMatrix.getIDs()
Get the IDs 
 | 
| Constructor and Description | 
|---|
ComputeSimilarityMatrixImage.SimilarityMatrix(RenderedImage img,
                                             Relation<?> relation,
                                             ArrayDBIDs ids)
Constructor 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected ArrayDBIDs | 
MaterializeKNNAndRKNNPreprocessor.affectedkNN(List<? extends KNNList<D>> extraxt,
           DBIDs remove)
Extracts and removes the DBIDs in the given collections. 
 | 
protected ArrayDBIDs | 
MaterializeKNNAndRKNNPreprocessor.affectedRkNN(List<? extends Collection<DistanceDBIDPair<D>>> extraxt,
            DBIDs remove)
Extracts and removes the DBIDs in the given collections. 
 | 
private ArrayDBIDs | 
MaterializeKNNPreprocessor.updateKNNsAfterDeletion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids. 
 | 
private ArrayDBIDs | 
MaterializeKNNPreprocessor.updateKNNsAfterInsertion(DBIDs ids)
Updates the kNNs of the RkNNs of the specified ids. 
 | 
private ArrayDBIDs | 
MaterializeKNNAndRKNNPreprocessor.updateKNNsAndRkNNs(DBIDs ids)
Updates the kNNs and RkNNs after insertion of the specified ids. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
MaterializeKNNAndRKNNPreprocessor.materializeKNNAndRKNNs(ArrayDBIDs ids,
                      FiniteProgress progress)
Materializes the kNNs and RkNNs of the specified object IDs. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ArrayDBIDs | 
SharedNearestNeighborIndex.getNearestNeighborSet(DBIDRef id)
Get the precomputed nearest neighbors 
 | 
ArrayDBIDs | 
SharedNearestNeighborPreprocessor.getNearestNeighborSet(DBIDRef objid)  | 
| Modifier and Type | Method and Description | 
|---|---|
List<? extends KNNList<D>> | 
ProjectedIndex.ProjectedKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
List<? extends DistanceDBIDList<D>> | 
ProjectedIndex.ProjectedRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
                   int k)  | 
| Modifier and Type | Method and Description | 
|---|---|
List<? extends DistanceDBIDList<D>> | 
MkTreeRKNNQuery.getRKNNForBulkDBIDs(ArrayDBIDs ids,
                   int k)  | 
| Modifier and Type | Method and Description | 
|---|---|
List<DoubleDistanceKNNList> | 
DoubleDistanceRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
List<KNNList<D>> | 
GenericRStarTreeKNNQuery.getKNNForBulkDBIDs(ArrayDBIDs ids,
                  int k)  | 
| Modifier and Type | Method and Description | 
|---|---|
private ArrayList<ArrayDBIDs> | 
HiCSDimensionSimilarity.buildOneDimIndexes(Relation<? extends NumberVector<?>> relation,
                  DBIDs ids,
                  DimensionSimilarityMatrix matrix)
Calculates "index structures" for every attribute, i.e. sorts a
 ModifiableArray of every DBID in the database for every dimension and
 stores them in a list 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private double | 
HiCSDimensionSimilarity.calculateContrast(Relation<? extends NumberVector<?>> relation,
                 DBIDs subset,
                 ArrayDBIDs subspaceIndex1,
                 ArrayDBIDs subspaceIndex2,
                 int dim1,
                 int dim2,
                 Random random)
Calculates the actual contrast of a given subspace 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static <V extends NumberVector<?>>  | 
DatabaseUtil.quickMedian(Relation<V> relation,
           ArrayDBIDs ids,
           int dimension,
           int numberOfSamples)
Returns the median of a data set in the given dimension by using a sampling
 method. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
DBID | 
ArrayDBIDsAdapter.get(ArrayDBIDs array,
   int off)  | 
int | 
ArrayDBIDsAdapter.size(ArrayDBIDs array)  | 
| Modifier and Type | Method and Description | 
|---|---|
private double[] | 
SigmoidOutlierScalingFunction.MStepLevenbergMarquardt(double a,
                       double b,
                       ArrayDBIDs ids,
                       BitSet t,
                       Relation<Double> scores)
M-Step using a modified Levenberg-Marquardt method. 
 |