| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans | 
 K-means clustering and variations. 
 | 
| de.lmu.ifi.dbs.elki.data.model | 
 Cluster models classes for various algorithms. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.parallel.cluster | 
 Visualizers for clustering results based on parallel coordinates. 
 | 
| de.lmu.ifi.dbs.elki.visualization.visualizers.scatterplot.cluster | 
 Visualizers for clustering results based on 2D projections. 
 | 
| tutorial.clustering | 
 Classes from the tutorial on implementing a custom k-means variation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel<V>> | 
NaiveMeanShiftClustering.run(Database database,
   Relation<V> relation)
Run the mean-shift clustering algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractKMeans<V extends NumberVector<?>,D extends Distance<D>,M extends MeanModel<V>>
Abstract base class for k-means implementations. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel<V>> | 
KMediansLloyd.run(Database database,
   Relation<V> relation)
Run k-medians. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EMModel<V extends FeatureVector<?>>
Cluster model of an EM cluster, providing a mean and a full covariance
 Matrix. 
 | 
class  | 
KMeansModel<V extends NumberVector<?>>
Trivial subclass of the  
MeanModel that indicates the clustering to be
 produced by k-means (so the Voronoi cell visualization is sensible). | 
class  | 
SubspaceModel<V extends FeatureVector<?>>
Model for Subspace Clusters. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Clustering<MeanModel<? extends NumberVector<?>>> | 
ClusterParallelMeanVisualization.Instance.clustering
The result we visualize. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private static Clustering<MeanModel<? extends NumberVector<?>>> | 
ClusterParallelMeanVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private static <NV extends NumberVector<?>>  | 
EMClusterVisualization.findMeanModel(Clustering<?> c)
Test if the given clustering has a mean model. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Clustering<MeanModel<V>> | 
SameSizeKMeansAlgorithm.run(Database database,
   Relation<V> relation)
Run k-means with cluster size constraints. 
 |