|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R>
de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm<O,D,Clustering<Model>>
de.lmu.ifi.dbs.elki.algorithm.clustering.DBSCAN<O,D>
O - the type of Object the algorithm is applied toD - the type of Distance used@Title(value="DBSCAN: Density-Based Clustering of Applications with Noise")
@Description(value="Algorithm to find density-connected sets in a database based on the parameters \'minpts\' and \'epsilon\' (specifying a volume). These two parameters determine a density threshold for clustering.")
@Reference(authors="M. Ester, H.-P. Kriegel, J. Sander, and X. Xu",
title="A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise",
booktitle="Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD \'96), Portland, OR, 1996",
url="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.71.1980")
public class DBSCAN<O,D extends Distance<D>>
DBSCAN provides the DBSCAN algorithm, an algorithm to find density-connected sets in a database.
Reference:
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu: A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise.
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD '96),
Portland, OR, 1996.
| Nested Class Summary | |
|---|---|
static class |
DBSCAN.Parameterizer<O,D extends Distance<D>>
Parameterization class. |
| Field Summary | |
|---|---|
private D |
epsilon
Holds the value of EPSILON_ID. |
static OptionID |
EPSILON_ID
Parameter to specify the maximum radius of the neighborhood to be considered, must be suitable to the distance function specified. |
private static Logging |
logger
The logger for this class. |
protected int |
minpts
Holds the value of MINPTS_ID. |
static OptionID |
MINPTS_ID
Parameter to specify the threshold for minimum number of points in the epsilon-neighborhood of a point, must be an integer greater than 0. |
protected ModifiableDBIDs |
noise
Holds a set of noise. |
protected ModifiableDBIDs |
processedIDs
Holds a set of processed ids. |
protected List<ModifiableDBIDs> |
resultList
Holds a list of clusters found. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID |
| Constructor Summary | |
|---|---|
DBSCAN(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
Constructor with parameters. |
|
| Method Summary | |
|---|---|
protected void |
expandCluster(Database database,
RangeQuery<O,D> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
DBSCAN-function expandCluster. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
Clustering<Model> |
run(Database database,
Relation<O> relation)
Performs the DBSCAN algorithm on the given database. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractDistanceBasedAlgorithm |
|---|
getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
public static final OptionID EPSILON_ID
private D extends Distance<D> epsilon
EPSILON_ID.
public static final OptionID MINPTS_ID
protected int minpts
MINPTS_ID.
protected List<ModifiableDBIDs> resultList
protected ModifiableDBIDs noise
protected ModifiableDBIDs processedIDs
| Constructor Detail |
|---|
public DBSCAN(DistanceFunction<? super O,D> distanceFunction,
D epsilon,
int minpts)
distanceFunction - Distance functionepsilon - Epsilon valueminpts - Minpts parameter| Method Detail |
|---|
public Clustering<Model> run(Database database,
Relation<O> relation)
protected void expandCluster(Database database,
RangeQuery<O,D> rangeQuery,
DBID startObjectID,
FiniteProgress objprog,
IndefiniteProgress clusprog)
database - the database on which the algorithm is runrangeQuery - Range query to usestartObjectID - potential seed of a new potential clusterobjprog - the progress object for logging the current statuspublic TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<Model>>protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<Clustering<Model>>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||