|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.estimators.NNConditionalEstimator
Conditional probability estimator for a numeric domain conditional upon a numeric domain (using Mahalanobis distance).
Field Summary | |
private boolean |
m_AllWeightsOne
Whether we can optimise the kernel summation |
private double |
m_CondMean
Current Conditional mean |
private java.util.Vector |
m_CondValues
Vector containing all of the conditioning values seen |
private Matrix |
m_Covariance
Current covariance matrix |
private double |
m_SumOfWeights
The sum of the weights so far |
private double |
m_ValueMean
Current Values mean |
private java.util.Vector |
m_Values
Vector containing all of the values seen |
private java.util.Vector |
m_Weights
Vector containing the associated weights |
private static double |
TWO_PI
2 * PI |
Constructor Summary | |
NNConditionalEstimator()
|
Method Summary | |
void |
addValue(double data,
double given,
double weight)
Add a new data value to the current estimator. |
private void |
calculateCovariance()
Calculate covariance and value means |
private int |
findNearestPair(double key,
double secondaryKey)
Execute a binary search to locate the nearest data value |
Estimator |
getEstimator(double given)
Get a probability estimator for a value |
double |
getProbability(double data,
double given)
Get a probability estimate for a value |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
private double |
normalKernel(double x,
double variance)
Returns value for normal kernel |
java.lang.String |
toString()
Display a representation of this estimator |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
private java.util.Vector m_Values
private java.util.Vector m_CondValues
private java.util.Vector m_Weights
private double m_SumOfWeights
private double m_CondMean
private double m_ValueMean
private Matrix m_Covariance
private boolean m_AllWeightsOne
private static double TWO_PI
Constructor Detail |
public NNConditionalEstimator()
Method Detail |
private int findNearestPair(double key, double secondaryKey)
key
- the data value to locatesecondaryKey
- the data value to locate
private void calculateCovariance()
private double normalKernel(double x, double variance)
x
- the argument to the kernel functionvariance
- the variance
public void addValue(double data, double given, double weight)
addValue
in interface ConditionalEstimator
data
- the new data valuegiven
- the new value that data is conditional uponweight
- the weight assigned to the data valuepublic Estimator getEstimator(double given)
getEstimator
in interface ConditionalEstimator
given
- the new value that data is conditional upon
public double getProbability(double data, double given)
getProbability
in interface ConditionalEstimator
data
- the value to estimate the probability ofgiven
- the new value that data is conditional upon
public java.lang.String toString()
public static void main(java.lang.String[] argv)
argv
- should contain a sequence of numeric values
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |