|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.lazy.IB1
IB1-type classifier. Uses a simple distance measure to find the training instance closest to the given test instance, and predicts the same class as this training instance. If multiple instances are the same (smallest) distance to the test instance, the first one found is used. For more information, see
Aha, D., and D. Kibler (1991) "Instance-based learning algorithms", Machine Learning, vol.6, pp. 37-66.
Field Summary | |
private double[] |
m_MaxArray
The maximum values for numeric attributes. |
private double[] |
m_MinArray
The minimum values for numeric attributes. |
private Instances |
m_Train
The training instances used for classification. |
Fields inherited from class weka.classifiers.Classifier |
m_Debug |
Constructor Summary | |
IB1()
|
Method Summary | |
void |
buildClassifier(Instances instances)
Generates the classifier. |
double |
classifyInstance(Instance instance)
Classifies the given test instance. |
private double |
distance(Instance first,
Instance second)
Calculates the distance between two instances |
java.lang.String |
globalInfo()
Returns a string describing classifier |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
private double |
norm(double x,
int i)
Normalizes a given value of a numeric attribute. |
java.lang.String |
toString()
Returns a description of this classifier. |
void |
updateClassifier(Instance instance)
Updates the classifier. |
private void |
updateMinMax(Instance instance)
Updates the minimum and maximum values for all the attributes based on a new instance. |
Methods inherited from class weka.classifiers.Classifier |
debugTipText, distributionForInstance, forName, getDebug, getOptions, listOptions, makeCopies, setDebug, setOptions |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
private Instances m_Train
private double[] m_MinArray
private double[] m_MaxArray
Constructor Detail |
public IB1()
Method Detail |
public java.lang.String globalInfo()
public void buildClassifier(Instances instances) throws java.lang.Exception
buildClassifier
in class Classifier
instances
- set of instances serving as training data
java.lang.Exception
- if the classifier has not been generated successfullypublic void updateClassifier(Instance instance) throws java.lang.Exception
updateClassifier
in interface UpdateableClassifier
instance
- the instance to be put into the classifier
java.lang.Exception
- if the instance could not be included successfullypublic double classifyInstance(Instance instance) throws java.lang.Exception
classifyInstance
in class Classifier
instance
- the instance to be classified
java.lang.Exception
- if the instance can't be classifiedpublic java.lang.String toString()
private double distance(Instance first, Instance second)
first
- the first instancesecond
- the second instance
private double norm(double x, int i)
x
- the value to be normalizedi
- the attribute's indexprivate void updateMinMax(Instance instance)
instance
- the new instancepublic static void main(java.lang.String[] argv)
argv
- should contain command line arguments for evaluation
(see Evaluation).
|
|||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |