| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.algorithm.clustering | 
 Clustering algorithms. 
 | 
| de.lmu.ifi.dbs.elki.algorithm.clustering.correlation | 
 Correlation clustering algorithms 
 | 
| de.lmu.ifi.dbs.elki.data | 
 Basic classes for different data types, database object types and label types. 
 | 
| de.lmu.ifi.dbs.elki.data.model | 
 Cluster models classes for various algorithms. 
 | 
| de.lmu.ifi.dbs.elki.data.projection | 
 Data projections. 
 | 
| de.lmu.ifi.dbs.elki.data.type | 
 Data type information, also used for type restrictions. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction | 
 Distance functions for use within ELKI. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.colorhistogram | 
 Distance functions using correlations. 
 | 
| de.lmu.ifi.dbs.elki.distance.distancefunction.correlation | 
 Distance functions using correlations. 
 | 
| de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel | 
 Kernel functions. 
 | 
| de.lmu.ifi.dbs.elki.index.lsh.hashfunctions | 
 Hash functions for LSH 
 | 
| de.lmu.ifi.dbs.elki.math | 
 Mathematical operations and utilities used throughout the framework. 
 | 
| de.lmu.ifi.dbs.elki.math.dimensionsimilarity | 
 Functions to compute the similarity of dimensions (or the interestingness of the combination). 
 | 
| de.lmu.ifi.dbs.elki.math.geometry | 
 Algorithms from computational geometry. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra | 
 Linear Algebra package provides classes and computational methods for operations on matrices. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.randomprojections | 
 Random projection families. 
 | 
| de.lmu.ifi.dbs.elki.math.statistics | 
 Statistical tests and methods. 
 | 
| de.lmu.ifi.dbs.elki.utilities | 
 Utility and helper classes - commonly used data structures, output formatting, exceptions, ... 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected double | 
EM.assignProbabilitiesToInstances(Relation<V> database,
                              double[] normDistrFactor,
                              List<Vector> means,
                              List<Matrix> invCovMatr,
                              double[] clusterWeights,
                              WritableDataStore<double[]> probClusterIGivenX)
Assigns the current probability values to the instances in the database and
 compute the expectation value of the current mixture of distributions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Matrix | 
ORCLUS.ORCLUSCluster.basis
The matrix defining the subspace of this cluster. 
 | 
(package private) Matrix | 
LMCLUS.Separation.basis
Basis of manifold 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private Matrix | 
CASH.determineBasis(double[] alpha)
Determines a basis defining a subspace described by the specified alpha
 values. 
 | 
private Matrix | 
ORCLUS.findBasis(Relation<V> database,
         DistanceQuery<V,DoubleDistance> distFunc,
         ORCLUS.ORCLUSCluster cluster,
         int dim)
Finds the basis of the subspace of dimensionality  
dim for the
 specified cluster. | 
private Matrix | 
LMCLUS.generateOrthonormalBasis(List<Vector> vectors)
This Method generates an orthonormal basis from a set of Vectors. 
 | 
private Matrix | 
CASH.runDerivator(Relation<ParameterizationFunction> relation,
            int dim,
            CASHInterval interval,
            ModifiableDBIDs ids)
Runs the derivator on the specified interval and assigns all points having
 a distance less then the standard deviation of the derivator model to the
 model to this model. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private MaterializedRelation<ParameterizationFunction> | 
CASH.buildDB(int dim,
       Matrix basis,
       DBIDs ids,
       Relation<ParameterizationFunction> relation)
Builds a dim-1 dimensional database where the objects are projected into
 the specified subspace. 
 | 
private double | 
LMCLUS.deviation(Vector delta,
         Matrix beta)
Deviation from a manifold described by beta. 
 | 
private ParameterizationFunction | 
CASH.project(Matrix basis,
       ParameterizationFunction f)
Projects the specified parameterization function into the subspace
 described by the given basis. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double[] | 
VectorUtil.fastTimes(Matrix mat,
         NumberVector<?> v)
This is an ugly hack, but we don't want to have the  
Matrix class
 depend on NumberVector. | 
| Modifier and Type | Field and Description | 
|---|---|
private Matrix | 
EMModel.covarianceMatrix
Cluster covariance matrix 
 | 
private Matrix | 
CorrelationAnalysisSolution.similarityMatrix
The similarity matrix of the pca. 
 | 
private Matrix | 
CorrelationAnalysisSolution.strongEigenvectors
The strong eigenvectors of the hyperplane induced by the correlation. 
 | 
private Matrix | 
CorrelationAnalysisSolution.weakEigenvectors
The weak eigenvectors of the hyperplane induced by the correlation. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
CorrelationAnalysisSolution.dataProjections(V p)
Returns the data vectors after projection. 
 | 
Matrix | 
EMModel.getCovarianceMatrix()  | 
Matrix | 
CorrelationAnalysisSolution.getSimilarityMatrix()
Returns the similarity matrix of the pca. 
 | 
Matrix | 
CorrelationAnalysisSolution.getStrongEigenvectors()
Returns the strong eigenvectors. 
 | 
Matrix | 
CorrelationAnalysisSolution.getWeakEigenvectors()
Returns the weak eigenvectors. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
EMModel.setCovarianceMatrix(Matrix covarianceMatrix)  | 
| Constructor and Description | 
|---|
CorrelationAnalysisSolution(LinearEquationSystem solution,
                           Relation<V> db,
                           Matrix strongEigenvectors,
                           Matrix weakEigenvectors,
                           Matrix similarityMatrix,
                           Vector centroid)
Provides a new CorrelationAnalysisSolution holding the specified matrix. 
 | 
CorrelationAnalysisSolution(LinearEquationSystem solution,
                           Relation<V> db,
                           Matrix strongEigenvectors,
                           Matrix weakEigenvectors,
                           Matrix similarityMatrix,
                           Vector centroid,
                           NumberFormat nf)
Provides a new CorrelationAnalysisSolution holding the specified matrix and
 number format. 
 | 
EMModel(V mean,
       Matrix covarianceMatrix)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Matrix | 
RandomProjection.projectionMatrix
Projection matrix. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
static SimpleTypeInformation<Matrix> | 
TypeUtil.MATRIX
Matrix type. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Matrix | 
WeightedDistanceFunction.weightMatrix
The weight matrix. 
 | 
| Constructor and Description | 
|---|
WeightedDistanceFunction(Matrix weightMatrix)
Provides the Weighted distance for feature vectors. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Matrix | 
RGBHistogramQuadraticDistanceFunction.computeWeightMatrix(int bpp)
Compute weight matrix for a RGB color histogram 
 | 
static Matrix | 
HSBHistogramQuadraticDistanceFunction.computeWeightMatrix(int quanth,
                   int quants,
                   int quantb)
Compute the weight matrix for HSB similarity. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
PCABasedCorrelationDistanceFunction.Instance.adjust(Matrix v,
      Matrix e_czech,
      Vector vector,
      int corrDim)
Inserts the specified vector into the given orthonormal matrix
  
v at column corrDim. | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Matrix | 
KernelMatrix.kernel
The kernel matrix 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Matrix | 
KernelMatrix.centerKernelMatrix(KernelMatrix kernelMatrix)
Centers the Kernel Matrix in Feature Space according to Smola et. 
 | 
static Matrix | 
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et. 
 | 
Matrix | 
KernelMatrix.getKernel()
Get the kernel matrix. 
 | 
Matrix | 
KernelMatrix.getSubColumn(int i,
            List<Integer> ids)
Returns the ith kernel matrix column for all objects in ids 
 | 
Matrix | 
KernelMatrix.getSubMatrix(Collection<Integer> ids)
Returns a sub kernel matrix for all objects in ids 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static Matrix | 
KernelMatrix.centerMatrix(Matrix matrix)
Centers the matrix in feature space according to Smola et. 
 | 
| Constructor and Description | 
|---|
KernelMatrix(Matrix matrix)
Makes a new kernel matrix from matrix (with data copying). 
 | 
| Modifier and Type | Field and Description | 
|---|---|
(package private) Matrix | 
MultipleProjectionsLocalitySensitiveHashFunction.projection
Projection matrix. 
 | 
| Constructor and Description | 
|---|
MultipleProjectionsLocalitySensitiveHashFunction(Matrix projection,
                                                double width,
                                                Random rnd)
Constructor. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
MathUtil.mahalanobisDistance(Matrix weightMatrix,
                   Vector o1_minus_o2)
Compute the Mahalanobis distance using the given weight matrix. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
DimensionSimilarityMatrix.copyToFullMatrix()
Transform linear triangle matrix into a full matrix. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static int[] | 
PrimsMinimumSpanningTree.processDense(Matrix mat)
Process a k x k distance matrix. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Matrix | 
AffineTransformation.inv
the inverse transformation 
 | 
private Matrix | 
SubspaceProjectionResult.similarityMat
The similarity matrix 
 | 
private Matrix | 
AffineTransformation.trans
The transformation matrix of dim+1 x dim+1 for homogeneous coordinates 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns. 
 | 
Matrix | 
Matrix.cheatToAvoidSingularity(double constant)
Adds a given value to the diagonal entries if the entry is smaller than the
 constant. 
 | 
Matrix | 
Matrix.clone()
Clone the Matrix object. 
 | 
Matrix | 
Matrix.completeBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
 i.e. appends c-d columns to this basis. 
 | 
Matrix | 
Matrix.completeToOrthonormalBasis()
Completes this d x c basis of a subspace of R^d to a d x d basis of R^d,
 i.e. appends c-d columns to this basis. 
 | 
static Matrix | 
Matrix.constructWithCopy(double[][] A)
Construct a matrix from a copy of a 2-D array. 
 | 
Matrix | 
Matrix.copy()
Make a deep copy of a matrix. 
 | 
Matrix | 
CovarianceMatrix.destroyToNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
 degrees of freedom. 
 | 
Matrix | 
CovarianceMatrix.destroyToSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
 degrees of freedom. 
 | 
static Matrix | 
Matrix.diagonal(double[] diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
 the diagonal. 
 | 
static Matrix | 
Matrix.diagonal(Vector diagonal)
Returns a quadratic Matrix consisting of zeros and of the given values on
 the diagonal. 
 | 
Matrix | 
SortedEigenPairs.eigenVectors()
Returns the sorted eigenvectors. 
 | 
Matrix | 
SortedEigenPairs.eigenVectors(int n)
Returns the first  
n sorted eigenvectors as a matrix. | 
Matrix | 
Matrix.exactGaussJordanElimination()
Returns a matrix derived by Gauss-Jordan-elimination using RationalNumbers
 for the transformations. 
 | 
Matrix | 
EigenvalueDecomposition.getD()
Return the block diagonal eigenvalue matrix 
 | 
Matrix | 
QRDecomposition.getH()
Return the Householder vectors 
 | 
Matrix | 
AffineTransformation.getInverse()
Get a copy of the inverse matrix 
 | 
Matrix | 
CholeskyDecomposition.getL()
Return triangular factor. 
 | 
Matrix | 
LUDecomposition.getL()
Return lower triangular factor 
 | 
Matrix | 
Matrix.getMatrix(int[] r,
         int[] c)
Get a submatrix. 
 | 
Matrix | 
Matrix.getMatrix(int[] r,
         int j0,
         int j1)
Get a submatrix. 
 | 
Matrix | 
Matrix.getMatrix(int i0,
         int i1,
         int[] c)
Get a submatrix. 
 | 
Matrix | 
Matrix.getMatrix(int i0,
         int i1,
         int j0,
         int j1)
Get a submatrix. 
 | 
Matrix | 
QRDecomposition.getQ()
Generate and return the (economy-sized) orthogonal factor 
 | 
Matrix | 
QRDecomposition.getR()
Return the upper triangular factor 
 | 
Matrix | 
SingularValueDecomposition.getS()
Return the diagonal matrix of singular values 
 | 
Matrix | 
AffineTransformation.getTransformation()
Get a copy of the transformation matrix 
 | 
Matrix | 
SingularValueDecomposition.getU()
Return the left singular vectors 
 | 
Matrix | 
LUDecomposition.getU()
Return upper triangular factor 
 | 
Matrix | 
SingularValueDecomposition.getV()
Return the right singular vectors 
 | 
Matrix | 
EigenvalueDecomposition.getV()
Return the eigenvector matrix 
 | 
static Matrix | 
Matrix.identity(int m,
        int n)
Generate identity matrix 
 | 
Matrix | 
Matrix.increment(int i,
         int j,
         double s)
Increments a single element. 
 | 
Matrix | 
Matrix.inverse()
Matrix inverse or pseudoinverse 
 | 
Matrix | 
CovarianceMatrix.makeNaiveMatrix()
Obtain the covariance matrix according to the population statistics: n
 degrees of freedom. 
 | 
Matrix | 
CovarianceMatrix.makeSampleMatrix()
Obtain the covariance matrix according to the sample statistics: (n-1)
 degrees of freedom. 
 | 
Matrix | 
Matrix.minus(Matrix B)
C = A - B 
 | 
Matrix | 
Matrix.minusEquals(Matrix B)
A = A - B 
 | 
Matrix | 
Matrix.minusTimes(Matrix B,
          double s)
C = A - s * B 
 | 
Matrix | 
Matrix.minusTimesEquals(Matrix B,
                double s)
A = A - s * B 
 | 
Matrix | 
Matrix.orthonormalize()
Returns an orthonormalization of this matrix. 
 | 
Matrix | 
Matrix.plus(Matrix B)
C = A + B 
 | 
Matrix | 
Matrix.plusEquals(Matrix B)
A = A + B 
 | 
Matrix | 
Matrix.plusTimes(Matrix B,
         double s)
C = A + s * B 
 | 
Matrix | 
Matrix.plusTimesEquals(Matrix B,
               double s)
A = A + s * B 
 | 
static Matrix | 
Matrix.random(int m,
      int n)
Generate matrix with random elements 
 | 
static Matrix | 
Matrix.read(BufferedReader input)
Read a matrix from a stream. 
 | 
Matrix | 
SortedEigenPairs.reverseEigenVectors(int n)
Returns the last  
n sorted eigenvectors as a matrix. | 
Matrix | 
Matrix.set(int i,
   int j,
   double s)
Set a single element. 
 | 
Matrix | 
ProjectionResult.similarityMatrix()
Projection matrix 
 | 
Matrix | 
SubspaceProjectionResult.similarityMatrix()  | 
Matrix | 
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
Matrix.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B 
 | 
Matrix | 
LUDecomposition.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
Matrix.times(double s)
Multiply a matrix by a scalar, C = s*A 
 | 
Matrix | 
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B. 
 | 
Matrix | 
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B 
 | 
Matrix | 
Matrix.timesEquals(double s)
Multiply a matrix by a scalar in place, A = s*A 
 | 
Matrix | 
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T. 
 | 
Matrix | 
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T 
 | 
Matrix | 
Vector.timesTranspose(Vector B)
Linear algebraic matrix multiplication, A * B^T. 
 | 
Matrix | 
Matrix.transpose()
Matrix transpose. 
 | 
Matrix | 
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B. 
 | 
Matrix | 
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B 
 | 
Matrix | 
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T. 
 | 
static Matrix | 
Matrix.unitMatrix(int dim)
Returns the unit matrix of the specified dimension. 
 | 
static Matrix | 
Matrix.zeroMatrix(int dim)
Returns the zero matrix of the specified dimension. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
AffineTransformation.addMatrix(Matrix m)
Add a matrix operation to the matrix. 
 | 
Matrix | 
Matrix.appendColumns(Matrix columns)
Returns a matrix which consists of this matrix and the specified columns. 
 | 
protected void | 
Matrix.checkMatrixDimensions(Matrix B)
Check if size(A) == size(B) 
 | 
boolean | 
Matrix.linearlyIndependent(Matrix columnMatrix)
Returns true if the specified column matrix  
a is linearly
 independent to the columns of this matrix. | 
static Centroid | 
Centroid.make(Matrix mat)
Static Constructor from an existing matrix columns. 
 | 
static CovarianceMatrix | 
CovarianceMatrix.make(Matrix mat)
Static Constructor. 
 | 
Matrix | 
Matrix.minus(Matrix B)
C = A - B 
 | 
Matrix | 
Matrix.minusEquals(Matrix B)
A = A - B 
 | 
Matrix | 
Matrix.minusTimes(Matrix B,
          double s)
C = A - s * B 
 | 
Matrix | 
Matrix.minusTimesEquals(Matrix B,
                double s)
A = A - s * B 
 | 
Matrix | 
Matrix.plus(Matrix B)
C = A + B 
 | 
Matrix | 
Matrix.plusEquals(Matrix B)
A = A + B 
 | 
Matrix | 
Matrix.plusTimes(Matrix B,
         double s)
C = A + s * B 
 | 
Matrix | 
Matrix.plusTimesEquals(Matrix B,
               double s)
A = A + s * B 
 | 
Vector | 
Vector.projection(Matrix v)
Projects this row vector into the subspace formed by the specified matrix
 v. 
 | 
void | 
Matrix.setMatrix(int[] r,
         int[] c,
         Matrix X)
Set a submatrix. 
 | 
void | 
Matrix.setMatrix(int[] r,
         int j0,
         int j1,
         Matrix X)
Set a submatrix. 
 | 
void | 
Matrix.setMatrix(int i0,
         int i1,
         int[] c,
         Matrix X)
Set a submatrix. 
 | 
void | 
Matrix.setMatrix(int i0,
         int i1,
         int j0,
         int j1,
         Matrix X)
Set a submatrix. 
 | 
Matrix | 
CholeskyDecomposition.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
Matrix.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
QRDecomposition.solve(Matrix B)
Least squares solution of A*X = B 
 | 
Matrix | 
LUDecomposition.solve(Matrix B)
Solve A*X = B 
 | 
Matrix | 
Vector.times(Matrix B)
Linear algebraic matrix multiplication, A * B. 
 | 
Matrix | 
Matrix.times(Matrix B)
Linear algebraic matrix multiplication, A * B 
 | 
Matrix | 
Vector.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T. 
 | 
Matrix | 
Matrix.timesTranspose(Matrix B)
Linear algebraic matrix multiplication, A * B^T 
 | 
Matrix | 
Vector.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B. 
 | 
Matrix | 
Matrix.transposeTimes(Matrix B)
Linear algebraic matrix multiplication, AT * B 
 | 
double | 
Vector.transposeTimesTimes(Matrix B,
                   Vector c)
Linear algebraic matrix multiplication, aT * B * c. 
 | 
Matrix | 
Matrix.transposeTimesTranspose(Matrix B)
Linear algebraic matrix multiplication, A^T * B^T. 
 | 
| Constructor and Description | 
|---|
AffineTransformation(int dim,
                    Matrix trans,
                    Matrix inv)
Trivial constructor with all fields, mostly for cloning 
 | 
CholeskyDecomposition(Matrix Arg)
Cholesky algorithm for symmetric and positive definite matrix. 
 | 
EigenvalueDecomposition(Matrix Arg)
Check for symmetry, then construct the eigenvalue decomposition 
 | 
LUDecomposition(Matrix A)
LU Decomposition 
 | 
Matrix(Matrix mat)
Constructor, cloning an existing matrix. 
 | 
QRDecomposition(Matrix A)
QR Decomposition, computed by Householder reflections. 
 | 
SingularValueDecomposition(Matrix Arg)
Construct the singular value decomposition 
 | 
SubspaceProjectionResult(int correlationDimensionality,
                        Matrix similarityMat)
Constructor. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private Matrix | 
PCAFilteredResult.adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech. 
 | 
private Matrix | 
PCAFilteredResult.e_czech
The selection matrix of the strong eigenvectors. 
 | 
private Matrix | 
PCAFilteredResult.e_hat
The selection matrix of the weak eigenvectors. 
 | 
private Matrix | 
PCAResult.eigenvectors
The eigenvectors in decreasing order to their corresponding eigenvalues. 
 | 
(package private) Matrix | 
PCAFilteredAutotuningRunner.Cand.m
Candidate matrix 
 | 
private Matrix | 
PCAFilteredResult.m_czech
The dissimilarity matrix. 
 | 
private Matrix | 
PCAFilteredResult.m_hat
The similarity matrix. 
 | 
private Matrix | 
PCAFilteredResult.strongEigenvectors
The strong eigenvectors to their corresponding filtered eigenvalues. 
 | 
private Matrix | 
PCAFilteredResult.weakEigenvectors
The weak eigenvectors to their corresponding filtered eigenvalues. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
PCAFilteredResult.adapatedStrongEigenvectors()
Returns the adapted strong eigenvectors. 
 | 
Matrix | 
PCAFilteredResult.dissimilarityMatrix()
Returns the dissimilarity matrix (M_czech) of this LocalPCA. 
 | 
Matrix | 
PCAResult.getEigenvectors()
Returns the matrix of eigenvectors of the object to which this PCA belongs
 to. 
 | 
Matrix | 
PCAFilteredResult.getStrongEigenvectors()
Returns the matrix of strong eigenvectors after passing the eigen pair
 filter. 
 | 
Matrix | 
PCAFilteredResult.getWeakEigenvectors()
Returns the matrix of weak eigenvectors after passing the eigen pair
 filter. 
 | 
Matrix | 
StandardCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database. 
 | 
Matrix | 
AbstractCovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)  | 
Matrix | 
CovarianceMatrixBuilder.processDatabase(Relation<? extends V> database)
Compute Covariance Matrix for a complete database. 
 | 
Matrix | 
StandardCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs. 
 | 
abstract Matrix | 
AbstractCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends V> database)  | 
Matrix | 
CovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends V> database)
Compute Covariance Matrix for a collection of database IDs. 
 | 
Matrix | 
WeightedCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends V> relation)
Weighted Covariance Matrix for a set of IDs. 
 | 
Matrix | 
RANSACCovarianceMatrixBuilder.processIds(DBIDs ids,
          Relation<? extends V> relation)  | 
<D extends NumberDistance<D,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database)  | 
<D extends NumberDistance<D,?>>  | 
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
AbstractCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)  | 
<D extends NumberDistance<D,?>>  | 
CovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
<D extends NumberDistance<D,?>>  | 
WeightedCovarianceMatrixBuilder.processQueryResults(DistanceDBIDList<D> results,
                   Relation<? extends V> database,
                   int k)
Compute Covariance Matrix for a QueryResult Collection. 
 | 
Matrix | 
PCAFilteredResult.selectionMatrixOfStrongEigenvectors()
Returns the selection matrix of the strong eigenvectors (E_czech)
 of this LocalPCA. 
 | 
Matrix | 
PCAFilteredResult.selectionMatrixOfWeakEigenvectors()
Returns the selection matrix of the weak eigenvectors (E_hat) of
 the object to which this PCA belongs to. 
 | 
Matrix | 
PCAFilteredResult.similarityMatrix()
Returns the similarity matrix (M_hat) of this LocalPCA. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
PCAResult | 
PCARunner.processCovarMatrix(Matrix covarMatrix)
Process an existing covariance Matrix. 
 | 
PCAFilteredResult | 
PCAFilteredRunner.processCovarMatrix(Matrix covarMatrix)
Process an existing Covariance Matrix. 
 | 
| Constructor and Description | 
|---|
PCAFilteredAutotuningRunner.Cand(Matrix m,
                                double explain,
                                int dim)
Constructor. 
 | 
PCAResult(double[] eigenvalues,
         Matrix eigenvectors,
         SortedEigenPairs eigenPairs)
Build a PCA result object. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Matrix | 
AchlioptasRandomProjectionFamily.generateProjectionMatrix(int idim,
                        int odim)  | 
Matrix | 
RandomProjectionFamily.generateProjectionMatrix(int dim,
                        int odim)
Generate a projection matrix for the given dimensionalities. 
 | 
Matrix | 
CauchyRandomProjectionFamily.generateProjectionMatrix(int idim,
                        int odim)  | 
Matrix | 
GaussianRandomProjectionFamily.generateProjectionMatrix(int idim,
                        int odim)  | 
| Modifier and Type | Field and Description | 
|---|---|
private Matrix | 
MultipleLinearRegression.x
The (n x p+1)-matrix holding the x-values, where the i-th row has the form
 (1 x1i ... x1p). 
 | 
private Matrix | 
MultipleLinearRegression.xx_inverse
Holds the matrix (x'x)^-1. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private static Matrix | 
PolynomialRegression.xMatrix(Vector x,
       int p)  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
MultipleLinearRegression.estimateY(Matrix x)
Perform an estimation of y on the specified matrix. 
 | 
| Constructor and Description | 
|---|
MultipleLinearRegression(Vector y,
                        Matrix x)
Provides a new multiple linear regression model with the specified
 parameters. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
static String | 
FormatUtil.format(Matrix m)
returns String-representation of Matrix. 
 | 
static String | 
FormatUtil.format(Matrix m,
      int w,
      int d)
Returns a string representation of this matrix. 
 | 
static String | 
FormatUtil.format(Matrix m,
      NumberFormat nf)
returns String-representation of Matrix. 
 | 
static String | 
FormatUtil.format(Matrix m,
      String pre)
Returns a string representation of this matrix. 
 | 
static String | 
FormatUtil.format(Matrix m,
      String pre,
      NumberFormat nf)
Returns a string representation of this matrix. 
 |