| Package | Description | 
|---|---|
| de.lmu.ifi.dbs.elki.math.linearalgebra | 
 Linear Algebra package provides classes and computational methods for operations on matrices. 
 | 
| de.lmu.ifi.dbs.elki.math.linearalgebra.pca | 
 Principal Component Analysis (PCA) and Eigenvector processing. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private EigenPair[] | 
SortedEigenPairs.eigenPairs
The array of eigenpairs. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
EigenPair | 
SortedEigenPairs.getEigenPair(int index)
Returns the eigenpair at the specified index. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
int | 
EigenPair.compareTo(EigenPair o)
Compares this object with the specified object for order. 
 | 
| Constructor and Description | 
|---|
SortedEigenPairs(List<EigenPair> eigenPairs)
Creates a new SortedEigenPairs object from the specified list. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
private List<EigenPair> | 
FilteredEigenPairs.strongEigenPairs
The strong eigenpairs. 
 | 
private List<EigenPair> | 
FilteredEigenPairs.weakEigenPairs
The weak eigenpairs. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
List<EigenPair> | 
FilteredEigenPairs.getStrongEigenPairs()
Returns the strong eigenpairs (no copy). 
 | 
List<EigenPair> | 
FilteredEigenPairs.getWeakEigenPairs()
Returns the weak eigenpairs (no copy). 
 | 
| Modifier and Type | Method and Description | 
|---|---|
private void | 
NormalizingEigenPairFilter.normalizeEigenPair(EigenPair eigenPair)
Normalizes an eigenpair consisting of eigenvector v and eigenvalue e s.t. 
 | 
| Constructor and Description | 
|---|
FilteredEigenPairs(List<EigenPair> weakEigenPairs,
                  List<EigenPair> strongEigenPairs)
Creates a new object that encapsulates weak and strong eigenpairs
 that have been filtered out by an eigenpair filter. 
 | 
FilteredEigenPairs(List<EigenPair> weakEigenPairs,
                  List<EigenPair> strongEigenPairs)
Creates a new object that encapsulates weak and strong eigenpairs
 that have been filtered out by an eigenpair filter. 
 |