| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractSpatialDoubleDistanceFunction
Abstract base class for typical distance functions that allow
 rectangle-to-rectangle lower bounds. 
 | 
class  | 
AbstractSpatialDoubleDistanceNorm
Abstract base class for typical distance functions that allow
 rectangle-to-rectangle lower bounds. 
 | 
class  | 
AbstractVectorDoubleDistanceFunction
Abstract base class for the most common family of distance functions: defined
 on number vectors and returning double values. 
 | 
class  | 
AbstractVectorDoubleDistanceNorm
Abstract base class for double-valued number-vector-based distances based on
 norms. 
 | 
class  | 
ArcCosineDistanceFunction
Cosine distance function for feature vectors. 
 | 
class  | 
BrayCurtisDistanceFunction
Bray-Curtis distance function / Sørensen–Dice coefficient for continuous
 spaces. 
 | 
class  | 
CanberraDistanceFunction
Canberra distance function, a variation of Manhattan distance. 
 | 
class  | 
ClarkDistanceFunction
Clark distance function for vector spaces. 
 | 
class  | 
CosineDistanceFunction
Cosine distance function for feature vectors. 
 | 
class  | 
JeffreyDivergenceDistanceFunction
Provides the Jeffrey Divergence Distance for FeatureVectors. 
 | 
class  | 
Kulczynski1DistanceFunction
Kulczynski similarity 1, in distance form. 
 | 
class  | 
LorentzianDistanceFunction
Lorentzian distance function for vector spaces. 
 | 
class  | 
WeightedDistanceFunction
Provides the Weighted distance for feature vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
HistogramIntersectionDistanceFunction
Intersection distance for color histograms. 
 | 
class  | 
HSBHistogramQuadraticDistanceFunction
Distance function for HSB color histograms based on a quadratic form and
 color similarity. 
 | 
class  | 
RGBHistogramQuadraticDistanceFunction
Distance function for RGB color histograms based on a quadratic form and
 color similarity. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
SquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. 
 | 
class  | 
WeightedPearsonCorrelationDistanceFunction
Pearson correlation distance function for feature vectors. 
 | 
class  | 
WeightedSquaredPearsonCorrelationDistanceFunction
Squared Pearson correlation distance function for feature vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DimensionSelectingLatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LatLngDistanceFunction
Distance function for 2D vectors in Latitude, Longitude form. 
 | 
class  | 
LngLatDistanceFunction
Distance function for 2D vectors in Longitude, Latitude form. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
EuclideanDistanceFunction
Provides the Euclidean distance for FeatureVectors. 
 | 
class  | 
LPNormDistanceFunction
Provides a LP-Norm for FeatureVectors. 
 | 
class  | 
ManhattanDistanceFunction
Manhattan distance function to compute the Manhattan distance for a pair of
 FeatureVectors. 
 | 
class  | 
MaximumDistanceFunction
Maximum distance function to compute the Maximum distance for a pair of
 FeatureVectors. 
 | 
class  | 
MinimumDistanceFunction
Maximum distance function to compute the Minimum distance for a pair of
 FeatureVectors. 
 | 
class  | 
SparseEuclideanDistanceFunction
Euclidean distance function. 
 | 
class  | 
SparseLPNormDistanceFunction
Provides a LP-Norm for FeatureVectors. 
 | 
class  | 
SparseManhattanDistanceFunction
Manhattan distance function. 
 | 
class  | 
SparseMaximumDistanceFunction
Maximum distance function. 
 | 
class  | 
SquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. 
 | 
class  | 
WeightedLPNormDistanceFunction
Weighted version of the Euclidean distance function. 
 | 
class  | 
WeightedSquaredEuclideanDistanceFunction
Provides the squared Euclidean distance for FeatureVectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LevenshteinDistanceFunction
Classic Levenshtein distance on strings. 
 | 
class  | 
NormalizedLevenshteinDistanceFunction
Levenshtein distance on strings, normalized by string length. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractDimensionsSelectingDoubleDistanceFunction<V extends FeatureVector<?>>
Provides a distance function that computes the distance (which is a double
 distance) between feature vectors only in specified dimensions. 
 | 
class  | 
DimensionSelectingDistanceFunction
Provides a distance function that computes the distance between feature
 vectors as the absolute difference of their values in a specified dimension. 
 | 
class  | 
SubspaceEuclideanDistanceFunction
Provides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. 
 | 
class  | 
SubspaceLPNormDistanceFunction
Provides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. 
 | 
class  | 
SubspaceManhattanDistanceFunction
Provides a distance function that computes the Euclidean distance between
 feature vectors only in specified dimensions. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractEditDistanceFunction
Provides the Edit Distance for FeatureVectors. 
 | 
class  | 
DTWDistanceFunction
Provides the Dynamic Time Warping distance for FeatureVectors. 
 | 
class  | 
EDRDistanceFunction
Provides the Edit Distance on Real Sequence distance for FeatureVectors. 
 | 
class  | 
ERPDistanceFunction
Provides the Edit Distance With Real Penalty distance for FeatureVectors. 
 | 
class  | 
LCSSDistanceFunction
Provides the Longest Common Subsequence distance for FeatureVectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FooKernelFunction
Provides an experimental KernelDistanceFunction for NumberVectors. 
 | 
class  | 
PolynomialKernelFunction
Provides a polynomial Kernel function that computes a similarity between the
 two feature vectors V1 and V2 defined by (V1^T*V2)^degree. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MultiLPNorm
Tutorial example for ELKI. 
 | 
class  | 
TutorialDistanceFunction
Tutorial example for ELKI. 
 |