|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.math.linearalgebra.pca.AbstractCovarianceMatrixBuilder<V>
de.lmu.ifi.dbs.elki.math.linearalgebra.pca.WeightedCovarianceMatrixBuilder<V>
V - Vector class to use@Title(value="Weighted Covariance Matrix / PCA")
@Description(value="A PCA modification by using weights while building the covariance matrix, to obtain more stable results")
@Reference(authors="H.-P. Kriegel, P. Kr\u00f6ger, E. Schubert, A. Zimek",
title="A General Framework for Increasing the Robustness of PCA-based Correlation Clustering Algorithms",
booktitle="Proceedings of the 20th International Conference on Scientific and Statistical Database Management (SSDBM), Hong Kong, China, 2008",
url="http://dx.doi.org/10.1007/978-3-540-69497-7_27")
public class WeightedCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>
CovarianceMatrixBuilder with weights.
This builder uses a weight function to weight points differently during build
a covariance matrix. Covariance can be canonically extended with weights, as
shown in the article
A General Framework for Increasing the Robustness of PCA-Based Correlation
Clustering Algorithms Hans-Peter Kriegel and Peer Kröger and Erich
Schubert and Arthur Zimek In: Proc. 20th Int. Conf. on Scientific and
Statistical Database Management (SSDBM), 2008, Hong Kong Lecture Notes in
Computer Science 5069, Springer
| Nested Class Summary | |
|---|---|
static class |
WeightedCovarianceMatrixBuilder.Parameterizer<V extends NumberVector<V,?>>
Parameterization class. |
| Field Summary | |
|---|---|
static OptionID |
WEIGHT_ID
Parameter to specify the weight function to use in weighted PCA, must implement WeightFunction
. |
private PrimitiveDistanceFunction<? super V,DoubleDistance> |
weightDistance
Holds the distance function used for weight calculation |
protected WeightFunction |
weightfunction
Holds the weight function. |
| Constructor Summary | |
|---|---|
WeightedCovarianceMatrixBuilder(WeightFunction weightfunction)
Constructor. |
|
| Method Summary | ||
|---|---|---|
Matrix |
processIds(DBIDs ids,
Relation<? extends V> database)
Weighted Covariance Matrix for a set of IDs. |
|
|
processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
Compute Covariance Matrix for a QueryResult Collection By default it will just collect the ids and run processIds |
|
| Methods inherited from class de.lmu.ifi.dbs.elki.math.linearalgebra.pca.AbstractCovarianceMatrixBuilder |
|---|
processDatabase, processQueryResults |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Field Detail |
|---|
public static final OptionID WEIGHT_ID
WeightFunction
.
Key: -pca.weight
protected WeightFunction weightfunction
private PrimitiveDistanceFunction<? super V extends NumberVector<? extends V,?>,DoubleDistance> weightDistance
| Constructor Detail |
|---|
public WeightedCovarianceMatrixBuilder(WeightFunction weightfunction)
weightfunction - | Method Detail |
|---|
public Matrix processIds(DBIDs ids,
Relation<? extends V> database)
processIds in interface CovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>processIds in class AbstractCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>ids - a collection of idsdatabase - the database used
public <D extends NumberDistance<?,?>> Matrix processQueryResults(Collection<DistanceResultPair<D>> results,
Relation<? extends V> database,
int k)
processQueryResults in interface CovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>processQueryResults in class AbstractCovarianceMatrixBuilder<V extends NumberVector<? extends V,?>>results - a collection of QueryResultsdatabase - the database usedk - number of elements to process
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||