|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<OutlierResult>
de.lmu.ifi.dbs.elki.algorithm.outlier.ReferenceBasedOutlierDetection<V,D>
V - a type of NumberVector as a suitable data object for this
algorithmD - the distance type processed@Title(value="An Efficient Reference-based Approach to Outlier Detection in Large Datasets")
@Description(value="Computes kNN distances approximately, using reference points with various reference point strategies.")
@Reference(authors="Y. Pei, O.R. Zaiane, Y. Gao",
title="An Efficient Reference-based Approach to Outlier Detection in Large Datasets",
booktitle="Proc. 19th IEEE Int. Conf. on Data Engineering (ICDE \'03), Bangalore, India, 2003",
url="http://dx.doi.org/10.1109/ICDM.2006.17")
public class ReferenceBasedOutlierDetection<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
provides the Reference-Based Outlier Detection algorithm, an algorithm that computes kNN distances approximately, using reference points.
Reference:
Y. Pei, O. R. Zaiane, Y. Gao: An Efficient Reference-Based Approach to
Outlier Detection in Large Datasets. In: Proc. IEEE Int. Conf. on Data
Mining (ICDM'06), Hong Kong, China, 2006.
| Nested Class Summary | |
|---|---|
static class |
ReferenceBasedOutlierDetection.Parameterizer<V extends NumberVector<?,?>,D extends NumberDistance<D,?>>
Parameterization class. |
| Field Summary | |
|---|---|
private DistanceFunction<V,D> |
distanceFunction
Distance function to use. |
private int |
k
Holds the value of K_ID. |
static OptionID |
K_ID
Parameter to specify the number of nearest neighbors of an object, to be considered for computing its REFOD_SCORE, must be an integer greater than 1. |
private static Logging |
logger
The logger for this class. |
private ReferencePointsHeuristic<V> |
refp
Stores the reference point strategy |
static OptionID |
REFP_ID
Parameter for the reference points heuristic. |
| Constructor Summary | |
|---|---|
ReferenceBasedOutlierDetection(int k,
DistanceFunction<V,D> distanceFunction,
ReferencePointsHeuristic<V> refp)
Constructor with parameters. |
|
| Method Summary | |
|---|---|
protected double |
computeDensity(List<DistanceResultPair<D>> referenceDists,
int index)
Computes the density of an object. |
protected List<DistanceResultPair<D>> |
computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
Computes for each object the distance to one reference point. |
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
OutlierResult |
run(Relation<V> relation)
Run the algorithm on the given relation. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.outlier.OutlierAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
public static final OptionID REFP_ID
public static final OptionID K_ID
private int k
K_ID.
private ReferencePointsHeuristic<V extends NumberVector<?,?>> refp
private DistanceFunction<V extends NumberVector<?,?>,D extends NumberDistance<D,?>> distanceFunction
| Constructor Detail |
|---|
public ReferenceBasedOutlierDetection(int k,
DistanceFunction<V,D> distanceFunction,
ReferencePointsHeuristic<V> refp)
k - k ParameterdistanceFunction - distance functionrefp - Reference points heuristic| Method Detail |
|---|
public OutlierResult run(Relation<V> relation)
relation - Relation to process
protected List<DistanceResultPair<D>> computeDistanceVector(V refPoint,
Relation<V> database,
DistanceQuery<V,D> distFunc)
refPoint - Reference Point Feature Vectordatabase - database to work ondistFunc - Distance function to use
protected double computeDensity(List<DistanceResultPair<D>> referenceDists,
int index)
referenceDists - vector of the reference distances,index - index of the current object
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<OutlierResult>protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<OutlierResult>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||