|
|
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<R>
de.lmu.ifi.dbs.elki.algorithm.AbstractPrimitiveDistanceBasedAlgorithm<V,D,Clustering<MeanModel<V>>>
de.lmu.ifi.dbs.elki.algorithm.clustering.KMeans<V,D>
D - a type of Distance as returned by the used distance
functionV - a type of NumberVector as a suitable datatype for this
algorithm@Title(value="K-Means")
@Description(value="Finds a partitioning into k clusters.")
@Reference(authors="J. MacQueen",
title="Some Methods for Classification and Analysis of Multivariate Observations",
booktitle="5th Berkeley Symp. Math. Statist. Prob., Vol. 1, 1967, pp 281-297",
url="http://projecteuclid.org/euclid.bsmsp/1200512992")
public class KMeans<V extends NumberVector<V,?>,D extends Distance<D>>
Provides the k-means algorithm.
Reference: J. MacQueen: Some Methods for Classification and Analysis of
Multivariate Observations.
In 5th Berkeley Symp. Math. Statist. Prob., Vol. 1, 1967, pp 281-297.
| Nested Class Summary | |
|---|---|
static class |
KMeans.Parameterizer<V extends NumberVector<V,?>,D extends Distance<D>>
Parameterization class. |
| Field Summary | |
|---|---|
private int |
k
Holds the value of K_ID. |
static OptionID |
K_ID
Parameter to specify the number of clusters to find, must be an integer greater than 0. |
private static Logging |
logger
The logger for this class. |
private int |
maxiter
Holds the value of MAXITER_ID. |
static OptionID |
MAXITER_ID
Parameter to specify the number of clusters to find, must be an integer greater or equal to 0, where 0 means no limit. |
private Long |
seed
Holds the value of SEED_ID. |
static OptionID |
SEED_ID
Parameter to specify the random generator seed. |
| Constructor Summary | |
|---|---|
KMeans(PrimitiveDistanceFunction<? super V,D> distanceFunction,
int k,
int maxiter,
Long seed)
Constructor. |
|
| Method Summary | |
|---|---|
TypeInformation[] |
getInputTypeRestriction()
Get the input type restriction used for negotiating the data query. |
protected Logging |
getLogger()
Get the (STATIC) logger for this class. |
protected List<V> |
means(List<? extends ModifiableDBIDs> clusters,
List<V> means,
Relation<V> database)
Returns the mean vectors of the given clusters in the given database. |
Clustering<MeanModel<V>> |
run(Database database,
Relation<V> relation)
Run k-means |
protected List<? extends ModifiableDBIDs> |
sort(List<V> means,
Relation<V> database)
Returns a list of clusters. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractPrimitiveDistanceBasedAlgorithm |
|---|
getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
makeParameterDistanceFunction, run |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.clustering.ClusteringAlgorithm |
|---|
run |
| Field Detail |
|---|
private static final Logging logger
public static final OptionID K_ID
public static final OptionID MAXITER_ID
public static final OptionID SEED_ID
private int k
K_ID.
private int maxiter
MAXITER_ID.
private Long seed
SEED_ID.
| Constructor Detail |
|---|
public KMeans(PrimitiveDistanceFunction<? super V,D> distanceFunction,
int k,
int maxiter,
Long seed)
distanceFunction - distance functionk - k parametermaxiter - Maxiter parameterseed - Random generator seed| Method Detail |
|---|
public Clustering<MeanModel<V>> run(Database database,
Relation<V> relation)
throws IllegalStateException
database - Databaserelation - relation to use
IllegalStateException
protected List<V> means(List<? extends ModifiableDBIDs> clusters,
List<V> means,
Relation<V> database)
clusters - the clusters to compute the meansmeans - the recent meansdatabase - the database containing the vectors
protected List<? extends ModifiableDBIDs> sort(List<V> means,
Relation<V> database)
means - a list of k meansdatabase - the database to cluster
public TypeInformation[] getInputTypeRestriction()
AbstractAlgorithm
getInputTypeRestriction in interface AlgorithmgetInputTypeRestriction in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<V,?>>>>protected Logging getLogger()
AbstractAlgorithm
getLogger in class AbstractAlgorithm<Clustering<MeanModel<V extends NumberVector<V,?>>>>
|
|
|||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||