|
|
|||||||||||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.varianceanalysis.AbstractPCA
de.lmu.ifi.dbs.elki.varianceanalysis.LocalPCA<V>
public abstract class LocalPCA<V extends RealVector<V,?>>
LocalPCA is a super calss for PCA-algorithms considering only a local neighborhood. LocalPCA provides some methods valid for any extending class.
Field Summary | |
---|---|
private Matrix |
adapatedStrongEigenvectors
The diagonal matrix of adapted strong eigenvalues: eigenvectors * e_czech. |
private double |
big
Holds the big value. |
static OptionID |
BIG_ID
OptionID for BIG_PARAM |
private DoubleParameter |
BIG_PARAM
Parameter to specify a constant big value to reset high eigenvalues, must be a double greater than 0. |
private int |
correlationDimension
The correlation dimension (i.e. the number of strong eigenvectors) of the object to which this PCA belongs to. |
private Matrix |
e_czech
The selection matrix of the strong eigenvectors. |
private Matrix |
e_hat
The selection matrix of the weak eigenvectors. |
private Matrix |
m_czech
The dissimilarity matrix. |
private Matrix |
m_hat
The similarity matrix. |
private double |
small
Holds the small value. |
static OptionID |
SMALL_ID
OptionID for SMALL_PARAM |
private DoubleParameter |
SMALL_PARAM
Parameter to specify a constant small value to reset low eigenvalues, must be a double greater than 0. |
Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
optionHandler |
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debug |
Constructor Summary | |
---|---|
LocalPCA()
Adds parameter for big and small value to parameter map. |
Method Summary | |
---|---|
Matrix |
adapatedStrongEigenvectors()
Returns a copy of the adapted strong eigenvectors. |
Matrix |
dissimilarityMatrix()
Returns a copy of the dissimilarity matrix (M_czech) of this LocalPCA. |
int |
getCorrelationDimension()
Returns the correlation dimension (i.e. the number of strong eigenvectors) of the object to which this PCA belongs to. |
protected abstract Matrix |
pcaMatrix(Database<V> database,
Collection<Integer> ids)
Determines and returns the matrix that is used for performaing the pca. |
void |
run(Collection<Integer> ids,
Database<V> database)
Performs a LocalPCA for the object with the specified ids stored in the given database. |
Matrix |
selectionMatrixOfStrongEigenvectors()
Returns a copy of the selection matrix of the strong eigenvectors (E_czech) of this LocalPCA. |
Matrix |
selectionMatrixOfWeakEigenvectors()
Returns a copy of the selection matrix of the weak eigenvectors (E_hat) of the object to which this PCA belongs to. |
String[] |
setParameters(String[] args)
Sets the attributes of the class accordingly to the given parameters. |
Matrix |
similarityMatrix()
Returns a copy of the similarity matrix (M_hat) of this LocalPCA. |
Methods inherited from class de.lmu.ifi.dbs.elki.varianceanalysis.AbstractPCA |
---|
determineEigenPairs, getAttributeSettings, getEigenvalues, getEigenvectors, getStrongEigenvalues, getStrongEigenvectors, getWeakEigenvalues, getWeakEigenvectors |
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
addOption, checkGlobalParameterConstraints, deleteOption, description, description, description, getParameters, getParameterValue, getPossibleOptions, inlineDescription, isSet, setParameters |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debugFine, debugFiner, debugFinest, exception, message, progress, progress, progress, verbose, verbose, warning |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable |
---|
checkGlobalParameterConstraints, description, getParameters, getPossibleOptions, inlineDescription |
Field Detail |
---|
public static final OptionID BIG_ID
BIG_PARAM
public static final OptionID SMALL_ID
SMALL_PARAM
private final DoubleParameter BIG_PARAM
Default value: 1.0
Key: -localpca.big
private final DoubleParameter SMALL_PARAM
Default value: 0.0
Key: -localpca.small
private double big
private double small
private int correlationDimension
private Matrix e_hat
private Matrix e_czech
private Matrix m_hat
private Matrix m_czech
private Matrix adapatedStrongEigenvectors
Constructor Detail |
---|
public LocalPCA()
Method Detail |
---|
public final void run(Collection<Integer> ids, Database<V> database)
ids
- the ids of the objects for which the PCA should be performeddatabase
- the database containing the objectspublic String[] setParameters(String[] args) throws ParameterException
Parameterizable
setParameters
in interface Parameterizable
setParameters
in class AbstractPCA
args
- parameters to set the attributes accordingly to
ParameterException
- in case of wrong parameter-settingParameterizable.setParameters(String[])
public int getCorrelationDimension()
public Matrix selectionMatrixOfWeakEigenvectors()
public Matrix selectionMatrixOfStrongEigenvectors()
public Matrix similarityMatrix()
public Matrix dissimilarityMatrix()
public Matrix adapatedStrongEigenvectors()
protected abstract Matrix pcaMatrix(Database<V> database, Collection<Integer> ids)
database
- the database holding the objectsids
- the list of the object ids for which the matrix should be
determined
|
|
||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |