Environment for
DeveLoping
KDD-Applications
Supported by Index-Structures

de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Class LinearKernelFunction<O extends FeatureVector<O,?>>

java.lang.Object
  extended by de.lmu.ifi.dbs.elki.logging.AbstractLoggable
      extended by de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
          extended by de.lmu.ifi.dbs.elki.distance.AbstractMeasurementFunction<O,D>
              extended by de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractDistanceFunction<O,D>
                  extended by de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractKernelFunction<O,DoubleDistance>
                      extended by de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractDoubleKernelFunction<O>
                          extended by de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.LinearKernelFunction<O>
All Implemented Interfaces:
DistanceFunction<O,DoubleDistance>, MeasurementFunction<O,DoubleDistance>, KernelFunction<O,DoubleDistance>, SimilarityFunction<O,DoubleDistance>, Loggable, Parameterizable

public class LinearKernelFunction<O extends FeatureVector<O,?>>
extends AbstractDoubleKernelFunction<O>

Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2.

Author:
Simon Paradies

Field Summary
 
Fields inherited from class de.lmu.ifi.dbs.elki.distance.AbstractMeasurementFunction
INFINITY_PATTERN
 
Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
optionHandler
 
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable
debug
 
Constructor Summary
LinearKernelFunction()
          Provides a linear Kernel function that computes a similarity between the two vectors V1 and V2 definded by V1^T*V2.
 
Method Summary
 String description()
          Returns a description of the class and the required parameters.
 DoubleDistance similarity(O o1, O o2)
          Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2
 
Methods inherited from class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractDoubleKernelFunction
distance, infiniteDistance, nullDistance, undefinedDistance, valueOf
 
Methods inherited from class de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractKernelFunction
similarity, similarity
 
Methods inherited from class de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractDistanceFunction
distance, distance, isInfiniteDistance, isNullDistance, isUndefinedDistance
 
Methods inherited from class de.lmu.ifi.dbs.elki.distance.AbstractMeasurementFunction
getDatabase, matches, requiredInputPattern, setDatabase, setRequiredInputPattern
 
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
addOption, checkGlobalParameterConstraints, deleteOption, description, description, getAttributeSettings, getParameters, getParameterValue, getPossibleOptions, inlineDescription, isSet, setParameters, setParameters
 
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable
debugFine, debugFiner, debugFinest, exception, message, progress, progress, progress, verbose, verbose, warning
 
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
 
Methods inherited from interface de.lmu.ifi.dbs.elki.distance.distancefunction.DistanceFunction
distance, distance
 
Methods inherited from interface de.lmu.ifi.dbs.elki.distance.MeasurementFunction
isInfiniteDistance, isNullDistance, isUndefinedDistance, requiredInputPattern, setDatabase
 
Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable
checkGlobalParameterConstraints, getAttributeSettings, getParameters, getPossibleOptions, inlineDescription, setParameters
 

Constructor Detail

LinearKernelFunction

public LinearKernelFunction()
Provides a linear Kernel function that computes a similarity between the two vectors V1 and V2 definded by V1^T*V2.

Method Detail

similarity

public DoubleDistance similarity(O o1,
                                 O o2)
Provides a linear Kernel function that computes a similarity between the two feature vectors V1 and V2 definded by V1^T*V2

Parameters:
o1 - first feature vector
o2 - second feature vector
Returns:
the linear kernel similarity between the given two vectors as an instance of DoubleDistance.
See Also:
DistanceFunction.distance(de.lmu.ifi.dbs.elki.data.DatabaseObject, de.lmu.ifi.dbs.elki.data.DatabaseObject)

description

public String description()
Description copied from interface: Parameterizable
Returns a description of the class and the required parameters.

This description should be suitable for a usage description as for a standalone application.

Specified by:
description in interface Parameterizable
Overrides:
description in class AbstractParameterizable
Returns:
String a description of the class and the required parameters
See Also:
Parameterizable.description()

Release 0.1 (2008-07-10_1838)