de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel
Class LinearKernelFunction<O extends FeatureVector<O,?>>
java.lang.Object
de.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.distance.AbstractMeasurementFunction<O,D>
de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractDistanceFunction<O,D>
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractKernelFunction<O,DoubleDistance>
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.AbstractDoubleKernelFunction<O>
de.lmu.ifi.dbs.elki.distance.similarityfunction.kernel.LinearKernelFunction<O>
- All Implemented Interfaces:
- DistanceFunction<O,DoubleDistance>, MeasurementFunction<O,DoubleDistance>, KernelFunction<O,DoubleDistance>, SimilarityFunction<O,DoubleDistance>, Loggable, Parameterizable
public class LinearKernelFunction<O extends FeatureVector<O,?>>
- extends AbstractDoubleKernelFunction<O>
Provides a linear Kernel function that computes
a similarity between the two feature vectors V1 and V2 definded by V1^T*V2.
- Author:
- Simon Paradies
Constructor Summary |
LinearKernelFunction()
Provides a linear Kernel function that computes
a similarity between the two vectors V1 and V2 definded by V1^T*V2. |
Method Summary |
String |
description()
Returns a description of the class and the required parameters. |
DoubleDistance |
similarity(O o1,
O o2)
Provides a linear Kernel function that computes
a similarity between the two feature vectors V1 and V2 definded by V1^T*V2 |
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
addOption, checkGlobalParameterConstraints, deleteOption, description, description, getAttributeSettings, getParameters, getParameterValue, getPossibleOptions, inlineDescription, isSet, setParameters, setParameters |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
debugFine, debugFiner, debugFinest, exception, message, progress, progress, progress, verbose, verbose, warning |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
LinearKernelFunction
public LinearKernelFunction()
- Provides a linear Kernel function that computes
a similarity between the two vectors V1 and V2 definded by V1^T*V2.
similarity
public DoubleDistance similarity(O o1,
O o2)
- Provides a linear Kernel function that computes
a similarity between the two feature vectors V1 and V2 definded by V1^T*V2
- Parameters:
o1
- first feature vectoro2
- second feature vector
- Returns:
- the linear kernel similarity between the given two vectors as an
instance of
DoubleDistance
. - See Also:
DistanceFunction.distance(de.lmu.ifi.dbs.elki.data.DatabaseObject, de.lmu.ifi.dbs.elki.data.DatabaseObject)
description
public String description()
- Description copied from interface:
Parameterizable
- Returns a description of the class and the required parameters.
This description should be suitable for a usage description as for a standalone application.
- Specified by:
description
in interface Parameterizable
- Overrides:
description
in class AbstractParameterizable
- Returns:
- String a description of the class and the required parameters
- See Also:
Parameterizable.description()