|
|
|||||||||||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O>
de.lmu.ifi.dbs.elki.algorithm.clustering.SNNClustering<O,D>
O
- the type of DatabaseObject the algorithm is applied onD
- the type of Distance used for the preprocessing of the shared nearest neighbors neighborhood listspublic class SNNClustering<O extends DatabaseObject,D extends Distance<D>>
Shared nearest neighbor clustering.
This class implements the algorithm proposed in L. Ertöz, M. Steinbach, V. Kumar: Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data. In: Proc. of SIAM Data Mining (SDM), 2003.
Field Summary | |
---|---|
private IntegerDistance |
epsilon
Holds the Epsilon value. |
static OptionID |
EPSILON_ID
OptionID for EPSILON_PARAM |
private IntParameter |
EPSILON_PARAM
Parameter to specify the minimum SNN density, must be an integer greater than 0. |
private int |
minpts
Holds the minimum points value. |
static OptionID |
MINPTS_ID
OptionID for MINPTS_PARAM |
private IntParameter |
MINPTS_PARAM
Parameter to specify the threshold for minimum number of points in the epsilon-SNN-neighborhood of a point, must be an integer greater than 0. |
protected Set<Integer> |
noise
Holds a set of noise. |
protected Set<Integer> |
processedIDs
Holds a set of processed ids. |
protected ClustersPlusNoise<O> |
result
Provides the result of the algorithm. |
protected List<List<Integer>> |
resultList
Holds a list of clusters found. |
private SharedNearestNeighborSimilarityFunction<O,D> |
similarityFunction
The similarity function for the shared nearest neighbor similarity. |
Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
optionHandler |
Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debug |
Constructor Summary | |
---|---|
SNNClustering()
Sets epsilon and minimum points to the optionhandler additionally to the parameters provided by super-classes. |
Method Summary | |
---|---|
String |
description()
Returns a description of the class and the required parameters. |
protected void |
expandCluster(Database<O> database,
Integer startObjectID,
Progress progress)
DBSCAN-function expandCluster adapted to SNN criterion. |
protected List<Integer> |
findSNNNeighbors(Database<O> database,
Integer queryObject)
|
List<AttributeSettings> |
getAttributeSettings()
Returns the settings of all options assigned to the option handler. |
Description |
getDescription()
Returns a description of the algorithm. |
IntegerDistance |
getEpsilon()
|
ClustersPlusNoise<O> |
getResult()
Returns the result of the algorithm. |
protected void |
runInTime(Database<O> database)
Performs the SNN clustering algorithm on the given database. |
String[] |
setParameters(String[] args)
Sets the parameters epsilon and minpts additionally to the parameters set by the super-class' method. |
Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
---|
isTime, isVerbose, run, setTime, setVerbose |
Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
---|
addOption, checkGlobalParameterConstraints, deleteOption, description, description, getParameters, getParameterValue, getPossibleOptions, inlineDescription, isSet, setParameters |
Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
---|
debugFine, debugFiner, debugFinest, exception, message, progress, progress, progress, verbose, verbose, warning |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Methods inherited from interface de.lmu.ifi.dbs.elki.algorithm.Algorithm |
---|
run, setTime, setVerbose |
Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable |
---|
checkGlobalParameterConstraints, getParameters, getPossibleOptions, inlineDescription |
Field Detail |
---|
public static final OptionID EPSILON_ID
EPSILON_PARAM
public static final OptionID MINPTS_ID
MINPTS_PARAM
private final IntParameter EPSILON_PARAM
Key: -snn.epsilon
private final IntParameter MINPTS_PARAM
Key: -snn.minpts
private IntegerDistance epsilon
private int minpts
protected List<List<Integer>> resultList
protected ClustersPlusNoise<O extends DatabaseObject> result
protected Set<Integer> noise
protected Set<Integer> processedIDs
private SharedNearestNeighborSimilarityFunction<O extends DatabaseObject,D extends Distance<D>> similarityFunction
Constructor Detail |
---|
public SNNClustering()
Method Detail |
---|
protected void runInTime(Database<O> database)
runInTime
in class AbstractAlgorithm<O extends DatabaseObject>
database
- the database to run the algorithm onAbstractAlgorithm.runInTime(de.lmu.ifi.dbs.elki.database.Database)
protected List<Integer> findSNNNeighbors(Database<O> database, Integer queryObject)
protected void expandCluster(Database<O> database, Integer startObjectID, Progress progress)
database
- the database on which the algorithm is runstartObjectID
- potential seed of a new potential clusterprogress
- the progress object to report about the progress of clusteringpublic Description getDescription()
Algorithm
getDescription
in interface Algorithm<O extends DatabaseObject>
Algorithm.getDescription()
public String[] setParameters(String[] args) throws ParameterException
setParameters
in interface Parameterizable
setParameters
in class AbstractAlgorithm<O extends DatabaseObject>
args
- parameters to set the attributes accordingly to
ParameterException
- in case of wrong parameter-settingParameterizable.setParameters(String[])
public ClustersPlusNoise<O> getResult()
Algorithm
getResult
in interface Algorithm<O extends DatabaseObject>
getResult
in interface Clustering<O extends DatabaseObject>
Algorithm.getResult()
public IntegerDistance getEpsilon()
public String description()
Parameterizable
description
in interface Parameterizable
description
in class AbstractAlgorithm<O extends DatabaseObject>
Parameterizable.description()
public List<AttributeSettings> getAttributeSettings()
AbstractParameterizable
getAttributeSettings
in interface Parameterizable
getAttributeSettings
in class AbstractParameterizable
Parameterizable.getAttributeSettings()
|
|
||||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |