|
|
|||||||||||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||||||||||||||
java.lang.Objectde.lmu.ifi.dbs.elki.logging.AbstractLoggable
de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable
de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm<O>
de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm<V,D>
de.lmu.ifi.dbs.elki.algorithm.DependencyDerivator<V,D>
V - the type of RealVector handled by this AlgorithmD - the type of Distance used by this Algorithmpublic class DependencyDerivator<V extends RealVector<V,?>,D extends Distance<D>>
Dependency derivator computes quantitativly linear dependencies among attributes of a given dataset based on a linear correlation PCA.
Reference:
E. Achtert, C. Boehm, H.-P. Kriegel, P. Kroeger, A. Zimek:
Deriving Quantitative Dependencies for Correlation Clusters.
In Proc. 12th Int. Conf. on Knowledge Discovery and Data Mining (KDD '06), Philadelphia, PA 2006.
| Field Summary | |
|---|---|
NumberFormat |
NF
Number format for output of solution. |
static OptionID |
OUTPUT_ACCURACY_ID
OptionID for OUTPUT_ACCURACY_PARAM |
private IntParameter |
OUTPUT_ACCURACY_PARAM
Parameter to specify the threshold for output accuracy fraction digits, must be an integer equal to or greater than 0. |
private LinearLocalPCA<V> |
pca
Holds the object performing the pca. |
private Flag |
RANDOM_SAMPLE_FLAG
Flag to use random sample (use knn query around centroid, if flag is not set). |
static OptionID |
SAMPLE_SIZE_ID
OptionID for SAMPLE_SIZE_PARAM |
private IntParameter |
SAMPLE_SIZE_PARAM
Optional parameter to specify the treshold for the size of the random sample to use, must be an integer greater than 0. |
private Integer |
sampleSize
Holds the value of SAMPLE_SIZE_PARAM. |
private CorrelationAnalysisSolution<V> |
solution
Holds the solution. |
| Fields inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
DISTANCE_FUNCTION_ID, DISTANCE_FUNCTION_PARAM |
| Fields inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
|---|
optionHandler |
| Fields inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debug |
| Constructor Summary | |
|---|---|
DependencyDerivator()
Provides a dependency derivator, adding parameters OUTPUT_ACCURACY_PARAM,
SAMPLE_SIZE_PARAM, and
flag RANDOM_SAMPLE_FLAG
to the option handler additionally to parameters of super class. |
|
| Method Summary | |
|---|---|
List<AttributeSettings> |
getAttributeSettings()
Calls DistanceBasedAlgorithm.getAttributeSettings()
and adds to the returned attribute settings the attribute settings of
the pca. |
Description |
getDescription()
Returns a description of the algorithm. |
CorrelationAnalysisSolution<V> |
getResult()
Returns the result of the algorithm. |
void |
runInTime(Database<V> db)
Runs the pca. |
String[] |
setParameters(String[] args)
Calls DistanceBasedAlgorithm#setParameters(args)
and sets additionally the values of the parameters
OUTPUT_ACCURACY_PARAM and SAMPLE_SIZE_PARAM. |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.DistanceBasedAlgorithm |
|---|
getDistanceFunction |
| Methods inherited from class de.lmu.ifi.dbs.elki.algorithm.AbstractAlgorithm |
|---|
description, isTime, isVerbose, run, setTime, setVerbose |
| Methods inherited from class de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizable |
|---|
addOption, checkGlobalParameterConstraints, deleteOption, description, description, getParameters, getParameterValue, getPossibleOptions, inlineDescription, isSet, setParameters |
| Methods inherited from class de.lmu.ifi.dbs.elki.logging.AbstractLoggable |
|---|
debugFine, debugFiner, debugFinest, exception, message, progress, progress, progress, verbose, verbose, warning |
| Methods inherited from class java.lang.Object |
|---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
| Methods inherited from interface de.lmu.ifi.dbs.elki.utilities.optionhandling.Parameterizable |
|---|
checkGlobalParameterConstraints, getParameters, getPossibleOptions, inlineDescription |
| Field Detail |
|---|
public static final OptionID OUTPUT_ACCURACY_ID
OUTPUT_ACCURACY_PARAM
private final IntParameter OUTPUT_ACCURACY_PARAM
Default value: 4
Key: -derivator.accuracy
public static final OptionID SAMPLE_SIZE_ID
SAMPLE_SIZE_PARAM
private final IntParameter SAMPLE_SIZE_PARAM
Default value: the size of the complete dataset
Key: -derivator.sampleSize
private Integer sampleSize
SAMPLE_SIZE_PARAM.
private final Flag RANDOM_SAMPLE_FLAG
Key: -derivator.randomSample
private LinearLocalPCA<V extends RealVector<V,?>> pca
private CorrelationAnalysisSolution<V extends RealVector<V,?>> solution
public final NumberFormat NF
| Constructor Detail |
|---|
public DependencyDerivator()
OUTPUT_ACCURACY_PARAM,
SAMPLE_SIZE_PARAM, and
flag RANDOM_SAMPLE_FLAG
to the option handler additionally to parameters of super class.
| Method Detail |
|---|
public Description getDescription()
Algorithm
Algorithm.getDescription()
public void runInTime(Database<V> db)
throws IllegalStateException
runInTime in class AbstractAlgorithm<V extends RealVector<V,?>>db - the database
IllegalStateException - if the algorithm has not been initialized
properly (e.g. the setParameters(String[]) method has been failed
to be called).AbstractAlgorithm.runInTime(Database)public CorrelationAnalysisSolution<V> getResult()
Algorithm
Algorithm.getResult()
public String[] setParameters(String[] args)
throws ParameterException
DistanceBasedAlgorithm#setParameters(args)
and sets additionally the values of the parameters
OUTPUT_ACCURACY_PARAM and SAMPLE_SIZE_PARAM.
The remaining parameters are passed to the pca.
setParameters in interface ParameterizablesetParameters in class DistanceBasedAlgorithm<V extends RealVector<V,?>,D extends Distance<D>>args - parameters to set the attributes accordingly to
ParameterException - in case of wrong parameter-settingParameterizable.setParameters(String[])public List<AttributeSettings> getAttributeSettings()
DistanceBasedAlgorithm.getAttributeSettings()
and adds to the returned attribute settings the attribute settings of
the pca.
getAttributeSettings in interface ParameterizablegetAttributeSettings in class DistanceBasedAlgorithm<V extends RealVector<V,?>,D extends Distance<D>>Parameterizable.getAttributeSettings()
|
|
||||||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||||||