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Abstract
One of the most challenging aspects of clustering is valida-
tion, which is the objective and quantitative assessment of
clustering results. A number of different relative validity
criteria have been proposed for the validation of globular,
clusters. Not all data, however, are composed of globular
clusters. Density-based clustering algorithms seek partitions
with high density areas of points (clusters, not necessarily
globular) separated by low density areas, possibly contain-
ing noise objects. In these cases relative validity indices pro-
posed for globular cluster validation may fail. In this paper
we propose a relative validation index for density-based, ar-
bitrarily shaped clusters. The index assesses clustering qual-
ity based on the relative density connection between pairs of
objects. Our index is formulated on the basis of a new ker-
nel density function, which is used to compute the density
of objects and to evaluate the within- and between-cluster
density connectedness of clustering results. Experiments on
synthetic and real world data show the effectiveness of our
approach for the evaluation and selection of clustering algo-
rithms and their respective appropriate parameters.

1 Introduction
Clustering is one of the primary data mining tasks.
Although there is no single consensus on the definition of
a cluster, the clustering procedure can be characterized
as the organization of data into a finite set of categories
by abstracting their underlying structure, either by
grouping objects in a single partition or by constructing
a hierarchy of partitions to describe data according to
similarities or relationships among its objects [20, 12,
18]. Over the previous decades, different clustering
definitions have given rise to a number of clustering
algorithms, showing a significant field development.

The variety of clustering algorithms, however, poses
difficulties to users, who not only have to select the
clustering algorithm best suited for a particular task,
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but also have to properly tune its parameters. Such
choices are closely related to clustering validation, one of
the most challenging topics in the clustering literature.
As stated by Jain and Dubes [20], “without a strong
effort in this direction, cluster analysis will remain a
black art accessible only to those true believers who have
experience and great courage”. More striking than the
statement itself is the fact that it still holds true after
25 years, despite all the progress that has been made.

A common approach to evaluate the quality of clus-
tering solutions involves the use of internal validity cri-
teria [20]. Many of such measures allow one to rank so-
lutions accordingly to their quality and are hence called
relative validity criteria. Because internal validity cri-
teria measure clustering quality based solely on infor-
mation intrinsic to the data they have great practical
appeal and numerous criteria have been proposed in
the literature [24, 20, 30]. The vast majority of rela-
tive validity criteria are based on the idea of comput-
ing the ratio of within-cluster scattering (compactness)
to between-cluster separation. Measures that follow
this definition have been designed for the evaluation of
convex shaped clusters (e.g., globular clusters) and fail
when applied to validate arbitrarily shaped, non-convex
clusters. They are also not defined for noise objects.

Density-based clusters are found, e.g., in geograph-
ical applications, such as clusters of points belonging
to rivers, roads, power lines or any connected shape in
image segmentations [21]. Some attempts have been
made to develop relative validity measures for arbitrar-
ily shaped clusters [25, 16, 8, 26, 36]. As we shall see,
however, these measures have serious drawbacks that
limit their practical applicability. To overcome the lack
of appropriate measures to the validation of density-
based clusters, we propose a measure called the Density-
Based Clustering Validation index (DBCV). DBCV em-
ploys the concept of Hartigan’s model of density-contour
trees [18] to compute the least dense region inside a
cluster and the most dense region between the clus-
ters, which are used to measure the within and between-
cluster density connectedness of clusters.

Our contributions are: (i) a new core distance def-
inition, which evaluates the density of objects w.r.t.

to appear in:
Proceedings of the 14th SIAM International Conference on Data Mining (SDM), Philadelphia, PA, 2014



other objects in the same cluster; these distances are
also comparable to distances of objects inside the clus-
ter; (ii) a new relative validity measure, based on our
concept of core distance, for the validation of arbitrarily
shaped clusters (along with noise, if present) and; (iii)
a novel approach that makes other relative validity cri-
teria capable of handling noise.

The remainder of the paper is organized as follows.
In Section 2 we review previous attempts to tackle the
validation of density-based clustering results. In Sec-
tion 3 we define the problem of density-based clustering
validation and introduce our relative validity index. In
Section 4 we discuss aspects of the evaluation of relative
validity measures and design an experimental setup to
assess the quality of our index. The results of the em-
pirical evaluation are presented in Section 5. Finally, in
Section 6, we draw the main conclusions.

2 Related Work
One of the major challenges in clustering is the vali-
dation of its results, which is often described as one of
the most difficult and frustrating steps of cluster anal-
ysis [20, 24]. Clustering validation can be divided into
three scenarios: external, internal, and relative [20].

External clustering validity approaches such as the
Adjusted Rand Index [19] compare clustering results
with a pre-existing clustering (or class) structure, i.e.,
a ground truth solution. Although disputably useful
for algorithm comparison and evaluation [13], external
measures do not have practical applicability, since,
according to its definition, clustering is an unsupervised
task, with no ground truth solution available a priori.

In real world applications internal and relative va-
lidity criteria are preferred, finding wide applicability.
Internal criteria measure the quality of a clustering so-
lution using only the data themselves. Relative crite-
ria are internal criteria able to compare two clustering
structures and point out which one is better in rela-
tive terms. Although most external criteria also meet
this requirement, the term relative validity criteria of-
ten refers to internal criteria that are also relative. Such
a convention is adopted hereafter. There are many rel-
ative clustering validity criteria proposed in the litera-
ture [30]. Such measures are based on the general idea
of computing the ratio of within-cluster scattering to
between-cluster separation, with differences arising from
different formulations of these two concepts.

Although relative validity measures have been suc-
cessfully employed to the evaluation of globular cluster-
ing results, they are not suitable for the evaluation of ar-
bitrarily shaped clusters, as obtained by density-based
algorithms. In the density-based clustering paradigm,
clusters are defined as dense areas separated by sparse

regions. Therefore, clustering results can contain arbi-
trarily shaped clusters and noise, which such measures
cannot handle properly, considering their original def-
inition. In spite of the extensive literature on relative
validation criteria, not much attention has been given to
density-based clustering validation. Indeed, only a few
preliminary approaches are described in the literature.

Trying to capture arbitrary shapes of clusters some
authors have incorporated concepts from graph theory
into clustering validation. Pal and Biswas [25] build
graphs (Minimum Spanning Trees) for each clustering
solution, and use information from their edges to re-
formulate relative measures such as Dunn [10]. Al-
though the use of a graph can, in principle, capture ar-
bitrary cluster structures, the measures introduced by
the authors still compute compactness and separation
based on Euclidean distances, favoring globular clusters.
Moreover, separation is still based on cluster centroids,
which is not appropriate for arbitrarily shaped clusters.
Yang and Lee [33] employ a Proximity Graph to detect
cluster borders and develop tests to verify if a cluster-
ing is invalid, possibly valid or good. The problem with
this approach is that it does not result in a relative mea-
sure. Moreover, the tests employed by the authors re-
quire three different parameters from the user. Finally,
in both approaches [25, 33] graphs are obtained directly
from distances. No density concept is employed.

Occasionally, density-based concepts have been
used for clustering validation. Chou et al. [8] introduce
a measure that combines concepts from Dunn [10] and
Davies&Bouldin [9] and is aimed to deal with clusters
of different densities. The measure cannot, however,
handle arbitrary shapes. Pauwels and Frederix [26] in-
troduce a measure based on the notion of cluster homo-
geneity and connectivity. Although their measure pro-
vides interesting results, it has two critical parameters,
e.g., the user has to set K in order to compute KNN
distances and obtain cluster homogeneity. The SD and
S_Dbw measures [17, 14] have similar definitions, based
on concepts of scattering inside clusters and separation
between clusters considering the variance and distance
between centroids of the clusters. Both measures can-
not, however, deal with arbitrarily shaped clusters given
that they consider the center of clusters in their defini-
tions, which is not necessarily a representative point in
density-based arbitrarily shaped clusters.

The measure called CDbw [15, 16] is an attempt to
overcome previous drawbacks. CDbw is, as far as we
know, the most employed relative measure for density-
based validation. The approach adopted by CDbw is
to consider multiple representative points per cluster,
instead of one, and thereby to capture the arbitrary
shape of a cluster based on the spatial distribution



of such points. CDbw has, however, several major
drawbacks related to the multiple representatives it
employs. The first of these drawbacks is how to
determine the number of representative points for each
cluster. Given that clusters of different sizes, densities
and shapes are under evaluation, employing a fixed
number of representatives for all clusters does not
seem the best approach. Even if a single number of
representative points is employed for all clusters (as the
authors suggest), this number can still be critical to
the performance of the measure and is a parameter,
which is, at the very least, undesirable. Assuming that
a reasonable number of representative points can be
defined, the representative points themselves have to be
determined. Different approaches can be employed in
such a task for CDbw , as suggested by the authors. The
adoption of different approaches to find representative
points can not only be seen as another parameter, but
as a significant source of instability, given that two
different sets of representatives generated by different
approaches, can lead to different evaluations. A later
minor modification of CDbw , introduced by Wu and
Chow [32], suffers from the same drawbacks.

3 Density-Based Clustering Validation
Hartigan’s model of Density Contour Trees [18] defines
density-based clusters as regions of high density sepa-
rated from other such regions by regions of low density.
Considering such a model we can expect a good density-
based clustering solution to have clusters in which the
lowest density area inside each cluster is still denser than
the highest density area surrounding clusters.

Relative validity measures deemed as “traditional”
take into account distances to quantify cluster variance
which, combined with their separation, then amounts
for clustering quality. Minimizing cluster variance and
separation, however, is not the objective in density-
based clustering. Therefore, a relative measure for
evaluation of density-based clustering should be defined
by means of densities rather than by distances.

Below we introduce the Density Based Clustering
Validation (DBCV) which considers both density and
shape properties of clusters. To formulate DBCV we de-
fine the notion of all-points-core-distance (aptscoredist)
which is the inverse of the density of each object with
respect to all other objects inside its cluster. Using
aptscoredist we define a symmetric reachability dis-
tance (similar to the definition by Lelis and Sander [22])
which is then employed to build a Minimum Spanning
Tree (MST) inside each cluster. The MST captures both
the shape and density of a cluster, since it is built on the
transformed space of symmetric reachability distances.
Using such MSTs (one for each cluster), DBCV finds

the lowest density region in each cluster and the high-
est density region between pairs of clusters.

In the definitions of our concepts we use the fol-
lowing notations. Let O = {o1, · · · ,on} be a dataset
containing n objects in the Rd feature space. Let Dist
be an n×n matrix of pairwise distances d(op,oq), where
op,oq ∈ O, for a given metric distance d(·, ·). Let
KNN (o, i) be the distance between object o and its ith
nearest neighbor. Let C = ({Ci} , N) 1 ≤ i ≤ l be a
clustering solution containing l clusters and (a possibly
empty) set of noise objects N , for which ni is the size
of the ith cluster and nN is the cardinality of noise.

To estimate the density of an object within its
cluster, a traditional approach is to take the inverse
of the threshold distance necessary to find K objects
within this threshold [18, 5]. This way, however, the
density of an object is based on the distance to a single
point (the kth nearest neighbor). As such, this density
is not as robust as density estimates that consider more
objects from the neighborhood, such as Gaussian kernel
density estimate. Moreover, this definition introduces a
parameter (K), which is not desirable in validation.

In the following we aim to propose a new, more
robust, and parameterless definition of a core distance
that can be interpreted as the inverse of a density
estimate and be used in the definition of a mutual
reachability distance. To achieve this goal such a core
distance should have the following properties: first to
act as a more robust density estimate it should not
depend on a single point, but rather consider all the
points in a cluster in a way that closer objects have a
greater contribution to the density than farther objects.
This is a common property in density estimate methods
such as Gaussian kernel density estimation. Second,
since in the definition of a mutual reachability distance
[22] the core distance of an object is compared to
the distances of the object to other objects in the
cluster, the core distance should be comparable to these
distances. Third the core distance of an object should
be approximately to the distance of a Kth nearest
neighbor where K is not too large (representing a small
neighborhood of the object).

We define the core distance of an object o w.r.t. all
other objects inside its cluster (aptscoredist) as follows.

Definition 1. (Core Distance of an Object)
The all-points-core-distance (inverse of the density)
of an object o, belonging to cluster Ci w.r.t. all other
ni − 1 objects in Ci is defined as:

(3.1) aptscoredist(o) =


ni∑
i=2

(
1

KNN (o,i)

)d
ni − 1


− 1

d



In the following we show that our definition of
aptscoredist has the three aforementioned properties.

The first property holds because we calculate the
inverse of the KNN distances to the power of dimen-
sionality in aptscoredist , resulting in higher weight of
the contribution of closer objects. Note that this effect
could be made stronger by using the squared Euclidean
distance instead of Euclidean distance as dissimilarity.

In Proposition 3.1 we show that the second property
holds for aptscoredist , i.e., we prove that the aptscoredist
has values between the second and the last (nth) KNN
distances of the objects.

Proposition 3.1. The all-points-core-distance of each
object o, aptscoredist(o), is between the second and last
nearest neighbor distance of that object, i.e.,

KNN (o, 2) ≤ aptscoredist(o) ≤ KNN (o, n)

Proof. Proof is provided in supplementary material1.

Finally, in Propositions 3.2 and 3.3 we show that the
third property holds for our definition of aptscoredist in
uniform distribution.

Proposition 3.2. Let n objects be uniformly dis-
tributed random variables in a d-dimensional unit hy-
persphere and o be an object in the center of this hyper-
sphere. The core distance of o is:

(3.2) aptscoredist(o) ≈ ln(n)−
1
d

Proof. Proof is provided in supplementary material1.

Proposition 3.3. For aptscoredist(o), we have:

(3.3) aptscoredist(o) ≈ ln(n)−
1
d ≈ KNN (o, j),

with j being the closest natural number to n
ln(n) .

Proof. Proof is provided in supplementary material1.

Although the core distance of object o,
aptscoredist(o), is approximately equal to KNN (o, j)
for an uniform distribution for some j ≈ n

ln(n) (Propo-
sitions 3.2 and 3.3), note that, when we have a
distribution other than the uniform distribution, its
behavior follows our first desired property. If most of
the objects are close to o, aptscoredist tends to be a
smaller value. Contrarily if most of the objects are
distributed far away from o, aptscoredist tends to be a
greater value.

In Propositions 3.2 and 3.3, Euclidean distance is
assumed as dissimilarity, however, the conclusions are
similar for Squared Euclidean distance.

1http://webdocs.cs.ualberta.ca/~joerg/projects/sdm2014

aptscoredist is used to calculate the symmetric mu-
tual reachability distances in Def. 2, which can be seen
as the distance between objects considering their den-
sity properties. In Def. 4 we define the minimum span-
ning tree using mutual reachability distances to capture
the shape of the clusters together with density proper-
ties. These definitions are then used to find the lowest
density area (density sparseness) within—and highest
density area (density separation) between—clusters in
Defs. 5 and 6, which are then used to define the relative
validity index DBCV in Defs. 7 and 8.

Definition 2. (Mutual Reachability Distance)
The mutual reachability distance between two ob-
jects oi and oj in O is defined as dmreach(oi,oj) =
max{aptscoredist(oi), aptscoredist(oj), d(oi,oj)}.

Note that the comparison of aptscoredist and d(oi,oj)
in Def. 2 is meaningful because of the properties of
aptscoredist shown in Propositions 3.1 and 3.3.

Definition 3. (Mutual Reach. Dist. Graph)
The Mutual Reachability Distance Graph is a complete
graph with objects in O as vertices and the mutual
reachability distance between the respective pair of
objects as the weight of each edge.

Definition 4. (Mutual Reach. Dist. MST)
Let O be a set of objects and G be a mutual reachability
distance graph. The minimum spanning tree (MST) of
G is called MSTMRD .

We present, in brief, the overall idea behind DBCV.
Considering a single cluster Ci and its objects, we start
by computing the aptscoredist of the objects within Ci,
from which the Mutual Reachability Distances (MRDs)
for all pairs of objects in Ci are then obtained. Based
on the MRDs, a Minimum Spanning Tree (MSTMRD) is
then built. This process is repeated for all the clusters
in the partition, resulting in l minimum spanning trees,
one for each cluster.

Based on the MSTs obtained in the previous steps,
we define a density-based clustering validation index
based on the following notions of density sparseness
and density separation. The density sparseness of a
single cluster is defined as the maximum edge of its
corresponding MSTMRD , which can be interpreted as
the area with the lowest density inside the cluster. We
define the density separation of a cluster w.r.t. another
cluster as the minimum MRD between its objects and
the objects from the other cluster, which can be seen
as the maximum density area between the cluster and
the other cluster. These two definitions are then finally
combined into our validity index DBCV.

Let the set of internal edges in the MST be all
edges except those with one ending vertex of degree one.



Let the set of internal objects (vertices) be all objects
except those with degree one. The density sparseness
and separation of clusters are given by Defs. 5 and 6.

Definition 5. (Density Sparseness of a Cluster)
The Density Sparseness of a Cluster (DSC) Ci is de-
fined as the maximum edge weight of the internal edges
in MSTMRD of the cluster Ci, where MSTMRD is the
minimum spanning tree constructed using aptscoredist
considering the objects in Ci.

Definition 6. (Density Separation)
The Density Separation of a Pair of Clusters (DSPC) Ci
and Cj, 1 ≤ i, j ≤ l, i 6= j, is defined as the minimum
reachability distance between the internal nodes of the
MSTMRDs of clusters Ci and Cj.

Now we can compute the density-based quality of a
cluster as given by Definition 7. Note that, if a cluster
has better density compactness than density separation
we obtain positive values of the validity index. If the
density inside a cluster is lower than the density that
separates it from other clusters, the index is negative.

Definition 7. (Validity Index of a Cluster)
We define the validity of a cluster Ci, 1 ≤ i ≤ l, as:

(3.4) VC(Ci) =

min
1≤j≤l,j 6=i

(
DSPC (Ci, Cj)

)
−DSC (Ci)

max

(
min

1≤j≤l,j 6=i

(
DSPC (Ci, Cj)

)
,DSC (Ci)

)
The density-based clustering validity, DBCV, is given
by Def. 8. Note that, although noise is not explicitly
present in our formulation, it is implicitly considered by
the weighted average that takes into account the size of
the cluster (|Ci|) and the total number of objects under
evaluation, including noise, given by |O| in Eq. (3.5).

Definition 8. (Validity Index of a Clustering)
The Validity Index of the Clustering Solution
C = {Ci} , 1 ≤ i ≤ l is defined as the weighted
average of the Validity Index of all clusters in C.

(3.5) DBCV (C) =

i=l∑
i=1

|Ci|
|O|

VC(Ci)

It is easy to verify that our index produces values
between −1 and +1, with greater values of the measure
indicating better density-based clustering solutions.

4 Experimental Setup
The evaluation of a relative validity index is usually
performed as follows [30, 3]: (i) several partitions
are generated with different clustering algorithms; (ii)
for each clustering algorithm the ability of the new

measure to identify the correct number of clusters, as
defined by the ground truth partition of each dataset, is
verified. Although commonly employed, this evaluation
procedure has drawbacks [30]. In brief, it quantifies the
accuracy of a given relative validity criterion according
to whether or not it identifies the correct number
of clusters for a dataset, ignoring completely relative
qualities of the partitions under evaluation. Although
a partition may have the correct number of clusters,
it can present an unnatural clustering, misleading the
evaluation.

Since we use datasets with a known ground truth,
we choose to employ a methodology that takes full
advantage of external information. This methodology
was introduced by Vendramin et al. [30] and has been
previously employed successfully [31]. It assesses the
accuracy of relative criteria by comparing their scores
against those provided by an external criterion, such
as, the Adjusted Rand Index (ARI) [20]. A relative
criterion is considered to be better the more similar its
scores are to those provided by an external criterion.
Similarity, in this case, is measured by the Pearson
correlation. Although this procedure is far from perfect
[13], it probably is the best procedure available. The
methodology is summarized as follows:

1. Given a dataset with known ground truth, generate
nπ partitions with different properties by varying
the parameters of one or more clustering methods.

2. Compute the values of the relative and external
validity criteria for each one of the nπ partitions.

3. Compute the correlation between the vectors with
the nπ relative validity measure values and the nπ
external validity measure values. This correlation
quantifies the accuracy of the relative validity cri-
terion w.r.t. the external validity measure (ARI).

An important aspect in the evaluation of the rela-
tive measures for density-based clustering is how to deal
with noise objects, given that partitions generated with
density-based clustering algorithms may contain noise.
As far as we know, DBCV is the first relative validity
measure capable of handling noise. Since other relative
indices do not have this capability, noise has to be han-
dled prior to their application for a fair comparison. To
the best of our knowledge, there is no established pro-
cedure in the literature defining how to deal with noise
objects in a partition when applying a relative validity
index. We see at least five possible alternatives: (i) as-
sign all noise to a single cluster, (ii) assign each noise
point to its closest cluster, (iii) assign each noise point
to a singleton cluster, (iv) remove all noise points, and
(v) remove all noise points with a proportional penalty.

Following approach (i), real clusters end up embed-



ded in an unique cluster of noise. Approach (ii) modifies
the solutions under evaluation, causing other relative in-
dices to evaluate different clustering solutions than the
ones evaluated by our measure. In approach (iii), single-
ton clusters become close to most of the real clusters, re-
sulting in a poor overall separation, which degrades the
results of all measures. Just removing the noise with-
out any penalty in approach (iv) is not a good strategy
because the coverage is not considered. For instance, a
solution which has one object from each cluster and all
other objects as noise results in a perfect score. How-
ever penalizing lack of coverage as in approach (v) al-
lows the measures to deal with noise in an well behaved
way. Therefore we adopt this approach in our evalua-
tion, i.e., we evaluate measures only on points in clusters
and multiply the resulting score with (|O| − |N |)/|O|.

Note that this is the same approach adopted for
DBCV (Eq. 3.5). In our implementation we use the
Squared Euclidean distance since it amplifies the effect
of Property 1, which helps to better score solutions with
clusters at largely different scales of separation. Further
details are provided in the supplementary material.

4.1 Relative Measures We compare our measure
against five well-known relative measures from the liter-
ature, namely, Silhouette Width Criterion (SWC) [27],
Variance Ratio Criterion (VRC) [4], Dunn [10], and
Maulik-Bandyopadhyay (MB) [23]. We also evaluate
CDbw [16], which is, as far as we know, the most em-
ployed measure for density-based validation. All mea-
sures are available in the Cluster Validity Library [29].

4.2 Clustering Algorithms During the evaluation
of our measure we consider three different density-based
clustering algorithms for generating partitions: (i) the
well-known DBSCAN algorithm [11] (ii) the heuris-
tic method by Sander et al. [28], referred to here as
OPTICS-AutoCluster, which consists of the extraction
of the leaf nodes of a density-based cluster tree con-
structed from an OPTICS reachability plot [1] also used
in [7] and, (iii) HDBSCAN* [6], which produces a hier-
archy of all possible DBSCAN* partitions, each of which
is evaluated by the aforementioned relative validity mea-
sures. Considering parameters for such algorithms, we
simulate a scenario in which the user has no idea about
which values to choose, i.e., a scenario in which a rela-
tive density-based validation index is useful.

Two different parameters are needed as input for
DBSCAN, MinPts and ε. In the case of MinPts we
choose MinPts ∈ {4, 6, . . . , 18, 20}. For ε, we ob-
tain the minimum and maximum values of pairwise
distances for each dataset and employ 1000 differ-
ent values of ε equally distributed within this range.

Dataset 1 Dataset 2
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Figure 1: Synthetic 2D Datasets.

OPTICS-AutoCluster also demands MinPts, which was
set equally to MinPts of DBSCAN. The speed-up con-
trol value ε in OPTICS was not used (ε = Infinity).
For minimum cluster ratio we use 250 different values
from 0.001 to 0.5 with steps of 0.002. Finally, for HDB-
SCAN* we setmpts equally toMinPts of DBSCAN, and
use, MinClSize = mpts as employed by its authors [6].

4.3 Datasets We employ real and synthetic datasets
during our evaluation. We use real data from gene
expression data sets and well-known UCI Repository [2].
We use three gene expression datasets: (i) Cell Cycle
237 (Cell237), with 237 objects, 17 features and 4
clusters; (ii) Cell Cycle 384 (Cell384), with 384 objects,
17 features and 5 clusters both were made public by
[35]; and (iii) Yeast Galactose (Yeast), with 237 objects,
20 features and 4 clusters used in [34]. From UCI
Repository [2], we use four datasets: (i) Iris, with 150
objects, 4 features and 3 clusters; (ii) Wine, with 178
objects, 13 features and 3 clusters; (iii) Glass, with 214
objects, 9 features and 7 clusters; and (iv) Control Chart
(KDD), with 600 objects, 60 features and 6 clusters.
Besides the real datasets, which are multidimensional,
we also employ four 2D synthetic datasets, with different
numbers of objects, clusters and noise, as depicted in
Figure 1. Such datasets are useful to illustrate the
behavior of our measure for arbitrarily shaped clusters.

5 Results and Discussion
5.1 Real Datasets Results for real datasets are
shown in Tables 1 and 2, for which the best values for
each dataset are highlighted. Table 1 shows the Ad-
justed Rand Index (ARI) of the best partition selected
by each relative validity criterion. Note that DBCV



Index Dataset

Cell237 Cell384 Yeast Iris Wine Glass KDD

DBCV 0.62 0.39 0.96 0.60 0.24 0.29 0.56
SWC 0.52 0.33 0.90 0.57 0.29 0.28 0.37
VRC 0.40 0.33 0.73 0.21 0.01 0.28 0.37
Dunn 0.35 0.16 0.38 0.13 0.01 0.28 0.56
CDbw 0.55 0.30 0.75 0.55 0.23 0.28 0.54
MB 0.43 0.15 0.73 0.23 0.01 0.28 0.56

Table 1: Best ARI found by each relative measure.

Index Dataset

Cell237 Cell384 Yeast Iris Wine Glass KDD

DBCV 0.76 0.79 0.87 0.97 0.65 0.81 0.84
SWC 0.72 0.75 0.81 0.93 0.67 0.78 0.57
VRC 0.25 0.17 0.34 0.11 0.00 0.19 0.66
Dunn 0.64 0.29 0.65 0.25 0.10 0.62 0.51
CDbw -0.37 -0.39 -0.06 0.83 0.59 0.09 0.01
MB 0.40 0.14 0.41 0.15 0.06 0.35 0.52

Table 2: Correlation between relative indices and ARI.

outperforms its five competitors in most of the datasets.
Considering the results for the Wine dataset, in which
SWC provides the best result, DBCV is a close second.
For the Glass dataset, DBCV provides the best ARI
value, which is the maximum obtained by all three clus-
tering algorithms employed in the evaluation. There-
fore, DBCV recognizes the best solution that is available
to it. This also holds for other datasets, given that the
relative measures can only find partitions as good as the
ones generated by the clustering algorithms, which ex-
plains the low ARI in some cases. Table 2 shows the cor-
relation between each relative measure and ARI. In all
but one case DBCV outperforms its competitors. Again,
for Wine, in which the best correlation is obtained by
SWC, DBCV provides close results to SWC.

One interesting aspect that can be observed in this
evaluation is that some relative measures developed
for globular clusters perform relatively well. In fact,
Silhouette even provides the best results for one dataset.
This is easily explained by three facts. The first one is
the adaptation we introduced to deal with noise for such
measures, making them capable of handling partitions
with noise, which can be considered an additional
contribution of this paper. The second is the fact that
some of the datasets employed have globular clusters.
The third is that in some of the datasets ground truth
labeling does not follow the density-based structure
of the data, e.g., although ground truth consist of
three globular clusters in the Iris dataset, two of these
clusters are overlapping and therefore form a single
cluster from a density-based perspective. In such cases,
DBCV prefers 2 clusters whereas traditional measures
prefer 3. The combination of these three factors makes
such measures capable of recognizing good globular
partitions in the presence of noise, as generated by
density-based clustering algorithms. Note that we

Index Dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4

DBCV 0.91 0.90 0.74 0.99
SWC 0.72 0.21 0.19 0.31
VRC 0.51 0.01 0.02 0.01
Dunn 0.20 0.01 0.01 0.01
CDbw 0.84 0.71 0.04 0.92
MB 0.51 0.01 0.01 0.01

Table 3: Best ARI found by each relative measure.

emphasize globular, since our adaption of such measures
is useful only for such datasets. In case of arbitrarily
shaped datasets, such measures are still not appropriate,
as we illustrate in the following with synthetic 2D data.

5.2 Synthetic 2D Datasets To show how the rel-
ative measures perform in the presence of arbitrarily
shaped clusters we consider the four synthetic datasets
in Figure 1. Results for this datasets are shown in Fig-
ure 2. Due to space constraints, we show plots of the
best partitions selected by four relative measures, i.e.,
DBCV, SWC, CDbw , and VRC. Results for other rel-
ative measures designed for the evaluation of globular
clustering solutions follow the same trend as the ones
shown here. In all figures, noise points are denoted by
blue dots. For all datasets, DBCV is the only measure
capable of recognizing the true structure present in the
data. Other relative measures like SWC and VRC of-
ten find a large number of clusters, breaking the true
clusters into multiple small sub-clusters of small size.

As shown in Figure 2, CDbw is the only competitor
that finds some arbitrarily shaped structure in the
datasets, although it has some flaws. Considering
Dataset 1, for instance, the best partition it finds has
a large portion of the clusters assigned to noise (blue
dots). In Dataset 2, it recognizes a clustering solution
with merged clusters which is clearly not the best
solution. This is also the case in Dataset 4. In Dataset 3
it is simply not capable of recognizing the best partition,
which is composed of two spirals and random noise.

Finally, we show in Tables 3 and 4 the best ARI
values found with each measure and their respective
correlation with ARI, for each dataset. For all the 2D
datasets, DBCV finds the best solution. It also displays
the best correlation with ARI for all datasets (along
with CDbw in dataset 4). In brief, this shows that only
DBCV can properly find arbitrarily shaped clusters.

6 Conclusions
We have introduced a novel relative Density-Based Clus-
tering Validation index, DBCV. Unlike other relative
validity indices, our method not only directly takes into
account density and shape properties of clusters but also
properly deals with noise objects, which are intrinsic to
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Figure 2: Best partition found on Synthetic 2D Datasets.

Index Dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4

DBCV 0.66 0.76 0.37 0.86
SWC 0.39 -0.25 -0.31 -0.35
VRC -0.15 -0.05 -0.14 -0.43
Dunn -0.21 -0.05 -0.31 -0.32
CDbw 0.49 0.71 0.15 0.86
MB -0.14 -0.16 -0.12 -0.21

Table 4: Correlation between relative indices and ARI.

the definition of the density-based clustering. We also
propose an adaption to make other relative measures
capable of handling noise. Both DBCV and our noise
adaption approach showed promising results, confirming
their efficacy and applicability to clustering validation.
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