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General Issues

Please feel free to ask questions at any time during the
presentation

Aim of the tutorial: get the big picture
— NOT in terms of a long list of methods and algorithms
— BUT in terms of the basic algorithmic approaches

— Sample algorithms for these basic approaches will be sketched
 The selection of the presented algorithms is somewhat arbitrary
 Please don’t mind if your favorite algorithm is missing
Anyway you should be able to classify any other algorithm not covered

here by means of which of the basic approaches is implemented

The revised version of tutorial notes will soon be available
on our websites
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« Sample Applications

« General Problems and Challenges

* A First Taxonomy of Approaches




S

ey OaMple Applications

SYSTEMS
GROUP

« Gene Expression Analysis

— Data:
« Expression level of genes under
different samples such as
— different individuals (patients)
— different time slots after treatment

— different tissues
— different experimental environments

e Data matrix:

samples (usually ten to hundreds)

AN
e I
-
genes | =
(usually < ™
several \ expression level of
thousands) the ith gene under
L the jth sample
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— Task 1: Cluster the rows (i.e. genes) to find groups of genes with
similar expression profiles indicating homogeneous functions

» Challenge:
genes usually have
different functions
under varying
(combinations of) conditions

Gene1
Gene2
Gene3
Gene4
Gene5
Geneb6
Gene7
Gene8
Gene9

Cluster 1: {G1, G2, G6, G8}

N
N
A
N A/
N 97
N

Cluster 2: {G4, G5, G6}
Cluster 3: {G5, G6, G7, G9}

— Task 2: Cluster the columns (e.g. patients) to find groups with similar
expression profiles indicating homogeneous phenotypes

» Challenge:
different phenotypes
depend on different
(combinations of)
subsets of genes
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Cluster 1: {P1, P4, P8, P10}
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Cluster 2: {P4, P5, P6}
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« Metabolic Screening

Data

e Concentration of different metabolites
in the blood of different test persons
 Example:

Sample Applications

Bavarian Newborn Screening

e Data matrix:

test persons
(usually several
thousands)

Z

N

A

metabolites (usually ten to hundreds)

-

~

2

T

3Keto-3'-deoxs-ATP 3-Aming-3-decxy-AMP

N6, 16, O-Tridemme thyl-
&TP O—] Purt0 w0 Pu? O P Furb [0 oy in S -phosphate
3-Keto-3-deoxy-AMP

¢y H-arcetyl-H6, N6, O-ide methyl-
puromye in-5' pho phate

Phenylalanine, tyrosine and

tryptophan biosyuthe sis

H-uz etyl-O-de methyl
N-aAcetylpuromyein puromyecin
Fus o+ Pus O

PuromyrinC#—] NapH [—O#—2.1.1
M-z etyl-O-demethyl-

uromye in-5-phosphate

H-acetyl-Ho, O -dide methyl-
puromyt in-5-phosphate

concentration of
the ith metabolite
in the blood of the

Jth test person
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— Task: Cluster test persons to find groups of individuals with similar
correlation among the concentrations of metabolites indicating
homogeneous metabolic behavior (e.qg. disorder)

» Challenge:

different metabolic disorders appear through different correlations of

(subsets of) metabolites

Concentration
of Metabolite 2

4

A

N
«Q}
O o°
Sl

Q
healthy 8@0 o .

000

%

Concentration of Metabolite 1

v
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« Customer Recommendation / Target Marketing

— Data

« Customer ratings for given products

e Data matrix:

customers
(millions) <

NS

N

-

~

2

T

products (hundreds to thousands)

rating of the ith
product by the jth
customer

— Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

» Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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 And many more ...

* In general, we face a steadily increasing number of
applications that require the analysis of moderate-to-high
dimensional data

* Moderate-to-high dimensional means from appr. 10 to
hundreds or even thousands of dimensions
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* The curse of dimensionality

(from a clustering perspective)

— Ratio of (Dmax,— Dmin,) to Dmin, converges to zero with increasing
dimensionality d (see e.g. [BGRS99,HAKO0OQ])

* Dmin, = distance to the nearest neighbor in d dimensions
« Dmax, = distance to the farthest neighbor in d dimensions

Formally:

Dmax , —Dmin, 0)<e

Ve>0:lim, Pldist,( =1

Dmin

« Observable for a wide range of data distributions and distance functions
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— Consequences?

* The relative difference of distances between different points decreases
with increasing dimensionality

* The distances between points cannot be used in order to differentiate
between points

* The more the dimensionality is increasing, the more the data distribution
degenerates to random noise

» All points are almost equidistant from each other — there are no
clusters to discover in high dimensional spaces!!!

— Why?
« Common distance functions give equal weight to all dimensions
* However, all dimensions are not of equal importance

« Adding irrelevant dimensions ruins any clustering based on a
distance function that equally weights all dimensions
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« Beyond the curse of dimensionality

From the above sketched applications we can derive the
following observations for high dimensional data
— Subspace clusters:

Clusters usually do not exist in the full dimensional space but are often
hidden in subspaces of the data (e.g. in only a subset of experimental
conditions a gene may play a certain role)

— Local feature relevance/correlation:

For each cluster, a different subset of features or a different correlation of
features may be relevant (e.g. different genes are responsible for
different phenotypes)

— Overlapping clusters:

Clusters may overlap, i.e. an object may be clustered differently in
varying subspaces (e.g. a gene may play different functional roles
depending on the environment)

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 14



* Why not feature selection?
— (Unsupervised) feature selection is global (e.g. PCA)

— We face a local feature relevance/correlation: some features (or
combinations of them) may be relevant for one cluster, but may be
irrelevant for a second one




é General Problems & Challenges

SYSTEMS

o kv

— Use feature selection before clustering
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— Cluster first and then apply PCA
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* Problem summary

— Curse of dimensionality:
* In high dimensional, sparse data spaces, clustering does not make sense

— Local feature relevance and correlation:

 Different features may be relevant for different clusters

 Different combinations/correlations of features may be relevant for
different clusters

— Overlapping clusters:
* Objects may be assigned to different clusters in different subspaces
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» Solution: integrate variance / covariance analysis into the
clustering process
— Variance analysis:

* Find clusters in axis-parallel subspaces
« Cluster members exhibit low variance along the relevant dimensions

— Covariance/correlation analysis: t N

* Find clusters in arbitrarily oriented @‘?}>\
subspaces Disorder 3 0\60 o

« Cluster members exhibit a low “"‘"":"“f:"""'-‘;"f; O,:"‘
covariance w.r.t. a given combination o%f%ﬁi ° o
of the relevant dimensions (i.e. a low o.""s’.
variance along the dimensions of the 0 Q&"‘g
arbitrarily oriented subspace S L S ]
corresponding to the given combination 0%3“)/
of relevant attributes) R
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« So far, we can distinguish between

— Clusters in axis-parallel subspaces

Approaches are usually called
» “subspace clustering algorithms”
» “projected clustering algorithms”
* “bi-clustering or co-clustering algorithms”

— Clusters in arbitrarily oriented subspaces

Approaches are usually called
 “bi-clustering or co-clustering algorithms”
» “pattern-based clustering algorithms”
 “correlation clustering algorithms”
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A First Taxonomy of Approaches

* Note: other important aspects for classifying existing
approaches are e.q.

— The underlying cluster model that usually involves
* Input parameters
« Assumptions on number, size, and shape of clusters
* Noise (outlier) robustness

— Determinism

— Independence w.r.t. the order of objects/attributes

— Assumptions on overlap/non-overlap of clusters/subspaces
— Efficiency

.. S0 we should keep these issues in mind ...

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)

21
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3. Pattern-based Clustering

4. Arbitrarily-oriented Subspace Clustering

5. Summary




Challenges and Approaches

Bottom-up Algorithms

Top-down Algorithms

Summary
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« What are we searching for?

— Overlapping clusters: points may be grouped differently in different
subspaces

=> “subspace clustering’
— Disjoint partitioning: assign points uniquely to clusters (or noise)
=> “projected clustering’

Note: the terms subspace clustering and projected clustering are not
used in a unified or consistent way in the literature

« The nailve solution:

— Given a cluster criterion, explore each possible subspace of a d-
dimensional dataset whether it contains a cluster

— Runtime complexity: depends on the search space, i.e. the number of
all possible subspaces of a d-dimensional data set

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 24



 What is the number of all possible subspaces of a d-
dimensional data set?

— How many k-dimensional subspaces (k<d) do we have?
The number of all k-tupels of a set of d elements is

M

— Overall:
d (d
A
o\ k

— So the naive solution is computationally infeasible:

We face a runtime complexity of O(29)
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« Search space ford =4

4D

3D

2D

1D Ol I0I®
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« Basically, there are two different ways to efficiently navigate
through the search space of possible subspaces

— Bottom-up:
« Start with 1D subspaces and iteratively generate higher dimensional
ones using a “suitable” merging procedure

« If the cluster criterion implements the downward closure property, one
can use any bottom-up frequent itemset mining algorithm
(e.g. APRIORI [AS94])

» Key: downward-closure property OR merging procedure

— Top-down:

* The search starts in the full d-dimensional space and iteratively learns for
each point or each cluster the correct subspace

* Key: procedure to learn the correct subspace

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 27
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 Rational:

— Start with 1-dimensional subspaces and merge them to compute
higher dimensional ones

— Most approaches transfer the problem of subspace search into
frequent item set mining

* The cluster criterion must implement the downward closure property

— If the criterion holds for any k-dimensional subspace S, then it also holds for
any (k—1)-dimensional projection of S

— Use the reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
criterion also does not hold for S

« Apply any frequent itemset mining algorithm (APRIORI, FPGrowth, etc.)

— Few approaches use other search heuristics like best-first-search,
greedy-search, etc.

» Better average and worst-case performance
* No guaranty on the completeness of results
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* The key limitation: global density thresholds
— Usually, the cluster criterion relies on density

— In order to ensure the downward closure property, the density
threshold must be fixed

— Consequence: the points in a 20-dimensional subspace cluster must
be as dense as in a 2-dimensional cluster

— This is a rather optimistic assumption since the data space grows
exponentially with increasing dimensionality
— Consequences:
A strict threshold will most likely produce only lower dimensional clusters

* A loose threshold will most likely produce higher dimensional clusters but
also a huge amount of (potentially meaningless) low dimensional clusters

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 29



* Properties (APRIORI-style algorithms):
— Generation of all clusters in all subspaces => overlapping clusters

— Subspace clustering algorithms usually rely on bottom-up subspace
search

— Worst-case: complete enumeration of all subspaces, i.e. O(29) time
— Complete results

* See some sample bottom-up algorithms coming up ...
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. CLIQUE [AGGR98]

— Cluster model
« Each dimension is partitioned into £ equi-sized intervals called units

* A k-dimensional unit is the intersection of k 1-dimensional units (from
different dimensions)

* A unit uis considered dense if the fraction of all data points in u exceeds
the threshold

* A cluster is a maximal set of connected dense units

0.12

2-dimensional

dense unit | |° ‘
-

2-dimensional cluster
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— Downward-closure property holds for dense units
— Algorithm
» All dense cells are computed using APRIORI-style search

* A heuristics based on the coverage of a subspace is used to further
prune units that are dense but are in less interesting subspaces

(coverage of subspace S = fraction of data points covered by the dense
units of S)

« All connected dense units in a common subspace are merged to
generate the subspace clusters

— Discussion
 Input: € and 1 specifying the density threshold
« Output: all clusters in all subspaces, clusters may overlap

» Uses a fixed density threshold for all subspaces (in order to ensure the
downward closure property)

« Simple but efficient cluster model

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 32



. ENCLUS [CFZ99]

— Cluster model uses a fixed grid similar to CLIQUE
— Algorithm first searches for subspaces rather than for dense units

— Subspaces are evaluated following three criteria
» Coverage (see CLIQUE)

« Entropy

— Indicates how densely the points are packed in the corresponding subspace
(the higher the density, the lower the entropy)

— Implements the downward closure property
» Correlation

— Indicates how the attributes of the corresponding subspace are correlated to
each other

— Implements an upward closure property
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— Subspace search algorithm is bottom-up similar to CLIQUE but
determines subspaces having

Entropy < o and Correlation > ¢

T Low entropy (good clustering)

v High entropy (bad clustering) me - Low correlation (bad cIustering)_I
‘ | )

High correlation (good clustering

— Discussion
 |nput: thresholds w and ¢

» Output: all subspaces that meet the above criteria (far less than
CLIQUE), clusters may overlap

» Uses fixed thresholds for entropy and correlation for all subspaces
« Simple but efficient cluster model
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. MAFIA [NGCO1]

— Variant of CLIQUE, cluster model uses an adaptive grid:

— Discussion

each 1-dimensional unit covers a fixed number of data points

Density of higher dimensional units is again defined in terms of a
threshold 1 (see CLIQUE)

Using an adaptive grid instead of a fixed grid implements a more flexible
cluster model — however, grid specific problems remain

Input: { and t (density threshold)

Output: all clusters in all subspaces .
Uses a fixed density threshold for : ImmER LI
all subspaces
Simple but efficient cluster model $
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. SUBCLU [KKKO04]

— Cluster model:
* Density-based cluster model of DBSCAN [EKSX96]
» Clusters are maximal sets of density-connected points
« Density connectivity is defined based on core points
» Core points have at least minPts points in their e-neighborhood

o © @ MinPts=5
e © o
o © o lo) °

» Detects clusters of arbitrary size and shape (in the corresponding
subspaces)

— Downward-closure property holds for sets of density-connected
points
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— Algorithm
 All subspaces that contain any density-connected set are computed
using the bottom-up approach
» Density-connected clusters are computed using a DBSCAN run in the
resulting subspace to generate the subspace clusters

— Discussion
 Input: € and minPts specifying the density threshold
» Output: all clusters in all subspaces, clusters may overlap
» Uses a fixed density threshold for all subspaces

« Advanced but costly cluster model
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. FIRES[KKRWOS5]

— Proposes a bottom-up approach that uses different heuristics for
subspace search

— 3-Step algorithm

« Starts with 1-dimensional clusters called base clusters (generated by

applying any traditional clustering algorithm to each 1-dimensional
subspace)

* Merges these clusters to generate subspace cluster approximations by
applying a clustering of the base clusters using a variant of DBSCAN
(similarity between two clusters C1 and C2 is defined by |C1 n C2))

» Refines the resulting subspace cluster 4 g
approximations s ccf . <{-\;...\)< C
— Apply any traditional clustering basecluster "’)p subspace
algorithm on the points within the \ . ':.';:.. \ " o cluster
approximations B N ;
— Prune lower dimensional projections

Cp
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— Discussion

* Input:
— Three parameters for the merging procedure of base clusters

— Parameters for the clustering algorithm to create base clusters and for
refinement

» Output: clusters in maximal dimensional subspaces

 Allows overlapping clusters (subspace clustering) but avoids complete
enumeration; runtime of the merge step is O(d)!!!

« Output heavily depends on the accuracy of the merge step which is a
rather simple heuristic and relies on three sensitive parameters

» Cluster model can be chosen by the user
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. P3C [MSEO06]

— Cluster model

» Cluster cores (hyper-rectangular approximations of subspace clusters)
are computed in a bottom-up fashion from 1-dimensional intervals

» Cluster cores initialize an EM fuzzy clustering of all data points

— Algorithm proceeds in 3 steps
« Computing 1-dimensional cluster projections (intervals)
— Each dimension is partitioned into L1+Iogz(n)J equi-sized bins
— A Chi-square test is employed to discard bins containing too less points
— Adjacent bins are merged; the remaining intervals are reported

» Aggregating the cluster projections to higher dimensional cluster cores
using a downward closure property of cluster cores

« Computing true clusters from cluster cores
— Let k be the number of cluster cores generated
— Cluster all points with EM using k cluster core centers as initial clusters

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 40



— Discussion

 |nput: Poisson threshold for the Chi-square test to compute 1-
dimensional cluster projections

* Output: a fuzzy clustering of points to k clusters (NOTE: number of
clusters k is determined automatically), i.e. for each point p the
probabilities that p belongs to each of the k clusters is computed
From these probabilities

— a disjoint partition can be derived (projected clustering)
— also overlapping clusters can be discovered (subspace clustering)
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- DiSH [ABK+074]
— ldea:

» Not considered so far: lower dimensional clusters embedded in higher
dimensional ones

* 2DclusterA - 2D cluster B subspace cluster hierarchy

2D level 2
cluster B

25 -

* Now: find hierarchies of subspace clusters
* Integrate a proper distance function into hierarchical clustering

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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— Distance measure that captures subspace hierarchies assigns
» 1 if both points share a common 1D subspace cluster
« 2 if both points share a common 2D subspace cluster

— Sharing a common k-dimensional subspace cluster means
« Both points are associated to the same k-dimensional subspace cluster

» Both points are associated to different (k-1)-dimensional subspace
clusters that intersect or are parallel (but not skew)

— This distance is based on the subspace dimensionality of each point
p representing the (highest dimensional) subspace in which p fits best
» Analyze the local e-neighborhood of p along each attribute a
=> if it contains more than u points: a is interesting for p

« Combine all interesting attributes such that the e-neighborhood of p in the
subspace spanned by this combination still contains at least u points (e.g.
use APRIORI algorithm or best-first search)

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 43



— Discussion

 Input: € and u specify the density threshold for computing the relevant
subspaces of a point

» Output: a hierarchy of subspace clusters displayed as a graph, clusters
may overlap (but only w.r.t. the hierarchical structure!)

* Relies on a global density threshold
« Complex but costly cluster model




 Rational:

— Cluster-based approach:
» Learn the subspace of a cluster starting with full-dimensional clusters
« lteratively refine the cluster memberships of points and the subspaces of
the cluster
— Instance-based approach:

» Learn for each point its subspace preference in the full-dimensional
data space

* The subspace preference specifies the subspace in which each point
“clusters best”

» Merge points having similar subspace preferences to generate the
clusters




i Top-down Algorithms M |

* The key problem: How should we learn the subspace
preference of a cluster or a point?

— Most approaches rely on the so-called “locality assumption”

* The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:

— Cluster-based approach: the local neighborhood of each cluster
representative is evaluated in the d-dimensional space to learn the “correct”
subspace of the cluster

— Instance-based approach: the local neighborhood of each point is
evaluated in the d-dimensional space to learn the “correct” subspace
preference of each point

» The locality assumption: the subspace preference can be learned from
the local neighborhood in the d-dimensional space

— Other approaches learn the subspace preference of a cluster or a
point from randomly sampled points

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 46



 Discussion:

— Locality assumption

» Recall the effects of the curse of dimensionality on concepts like “local
neighborhood”

« The neighborhood will most likely contain a lot of noise points
— Random sampling

» The larger the number of total points compared to the number of cluster
points is, the lower the probability that cluster members are sampled

— Consequence for both approaches
* The learning procedure is often misled by these noise points




* Properties:

— Simultaneous search for the “best” partitioning of the data points and
the “best” subspace for each partition => disjoint partitioning

— Projected clustering algorithms usually rely on top-down subspace
search

— Worst-case:
« Usually complete enumeration of all subspaces is avoided
» Worst-case costs are typically in O(d?)

« See some sample top-down algorithms coming up ...
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Top-down Algorithms

. PROCLUS [APW+99]

— K-medoid cluster model
Cluster is represented by its medoid
To each cluster a subspace (of relevant attributes) is assigned

Each point is assigned to the nearest medoid (where the distance to each
medoid is based on the corresponding subspaces of the medoids)

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)

Points that have a large distance
to its nearest medoid are
classified as noise

—— = - -
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— 3-Phase Algorithm

« Initialization of a superset M of b-k medoids (computed from a sample of
ak data points)

* |terative phase works similar to any k-medoid clustering

— Approximate subspaces for each cluster C by computing the standard
deviation of distances from the medoid of C to the points in the locality of C
along each dimension and adding the dimensions with the smallest standard
deviation to the relevant dimensions of cluster C such that

- in summary k:/ dimensions are assigned to all clusters
- each cluster has at least 2 dimensions assigned

locality of C3 ~

locality of C2

locality of C1




— Reassign points to clusters

» Compute for each point the distance to each medoid taking only the
relevant dimensions into account

» Assign points to a medoid minimizing these distances
— Termination (criterion not really clearly specified in [APW+99])

» Terminate if the clustering quality does not increase after a given
number of current medoids have been exchanged with medoids from M

(it is not clear, if there is another hidden parameter in that criterion)

 Refinement

— Reassign subspaces to medoids as above (but use only the points assigned
to each cluster rather than the locality of each cluster)

— Reassign points to medoids; points that are not in the locality of their
corresponding medoids are classified as noise




— Discussion

* Input:
— Number of cluster k
— Average dimensionality of clusters /
— Factor a to determine the size of the sample in the initialization step
— Factor b to determine the size of the candidate set for the medoids

» Output: partitioning of points into k disjoint clusters and noise, each
cluster has a set of relevant attributes specifying its subspace

» Relies on cluster-based locality assumption: subspace of each cluster is
learned from local neighborhood of its medoid

» Biased to find /-dimensional subspace clusters
« Simple but efficient cluster model
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. DOC [PJAMO2]

— Cluster model

* A clusteris a pair (C,D) of cluster members C and relevant dimensions D
such that all points in C are contained in a |D|-dimensional hyper-cube
with side length w and |C| > o|DB|

* The quality of a cluster (C,D) is defined as
u(C.D)={CI( [p)®

where Be[0,1) specifies the trade-off
between the number of points and the
number of dimensions in a cluster
* An optimal cluster maximizes u
* Note:
— there may be several optimal clusters
— 1 is monotonically increasing in each argument

Y
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Top-down Algorithms

— Algorithm

* |dea: Generate an approximation of one optimal cluster (C,D) in each run
— Guess (via random sampling) a seed pe C and determine D
— Let B(p,D) be the |D|-dimensional hyper-cube centered at p with width 2-w

and let C* = DB n B(p,D)

— Then u(C*,D) > u(C,D) because (C*,D) may contain additional points

— However, (C*,D) has side length 2'w instead of w
— Determine D from a randomly sampled seed
point p and a set of sampled
discriminating points X:
If |p; — g < w for all ge X,

then dimension ie D

\ 4

o4



 Algorithm overview
— Compute a set of 2/a clusters (C,D) as follows
» Choose a seed p randomly
» lterate m times (m depends non-trivially on parameters o and B):
Choose a discriminating set X of size r
(r depends non-trivially on parameters o and )
Determine D as described above
Determine C* as described on the previous slide
Report (C*,D) if |C* = ov|DB|
— Report the cluster with the highest quality u

* It can be shown that if 1/(4d) <3 <72, then the probability that DOC
returns a cluster is above 50%
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— Discussion
* Input:
— w and o specifying the density threshold

— B specifies the trade-off between the number of points and the number of
dimensions in a cluster

« Output: a 2-w-approximation of an projected cluster that maximizes u
« NOTE: DOC does not rely on the locality assumption but rather on

random sampling o8
%

« But oo
| | -
— it uses a global density threshold 5k
pefe |
— the quality of the resulting cluster depends on L
» the randomly sampled seed 5 °
» the randomly sampled discriminating set W;.'j'?
» the position of the hyper-box w

» Needs multiple runs to improve the probability to succeed in finding a
cluster; one run only finds one cluster
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. PreDeCon [BKKK04]

— Cluster model:
» Density-based cluster model of DBSCAN [EKSX96] adapted to projected
clustering

— For each point p a subspace preference indicating the subspace in which p
clusters best is computed

— ¢-neighborhood of a point p is constrained by the subspace preference of p
— Core points have at least minPts other points in their e-neighborhood

— Density connectivity is defined based on core points

— Clusters are maximal sets of density connected points

« Subspace preference of a point p is d-dimensional vector w=(w,,...,w,),

entry w; represents dimension / with /\
|1 i Var, >0 beore 8% VAR <
" |k if Var <6 \_/

VAR: is the variance of the e-neighborhood of p in the entire d-
dimensional space, 6 and k are input parameters
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— Algorithm

Top-down Algorithms

* PreDeCon applies DBSCAN with a weighted Euclidean distance function

diStp(p,Q) :\/sz‘ '(pi _Qi)

Instead of shifting spheres (full-dimensional Euclidean e-neighborhoods),

w.rt. p

clusters are expanded by shifting axis-parallel ellipsoids (weighted

Euclidean e-neighborhoods)
Note: In the subspace of the cluster (defined by the preference of its

members), we shift spheres (but this intuition may be misleading)

v

{

v

v
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— Discussion

* Input:
— 0 and x to determine the subspace preference
— A specifies the maximal dimensionality of a subspace cluster
— ¢ and minPts specify the density threshold

» Output: a disjoint partition of data into clusters and noise

* Relies on instance-based locality assumption: subspace preference of
each point is learned from its local neighborhood

« Advanced but costly cluster model




. COSA [FM04]

— |ldea:

* Similar to PreDeCon, a weight vector w/, for each point p is computed
that represents the subspace in which each points clusters best

* The weight vector can contain arbitrary values rather than only 1 or a
fixed constant «

* The result of COSA is not a clustering but an nxn matrix D containing the
weighted pair-wise distances d,, of points p and q

» A subspace clustering can be derived by applying any clustering
algorithm (e.g. a hierarchical algorithm) using the distance matrix D
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— Determination of the distance matrix D
* For each point p, initialize the weight vector w, with equal weights
* [terate until all weight vectors stabilize:
— Compute the distance matrix D using the corresponding weight vectors

— Compute for each point p the k-nearest neighbors w.r.t. D

— Re-compute weight vector w, for each point p based on the distance
distribution of the kNN of p in each dimension

% Z distance between p and ¢ in attribute i

qekNN (p)
A
; e
w._ =
P % Z distance between p and ¢ in attribute &
d gekNN (p)
A
Z e

k=l

where A is a user-defined input parameter that affects the dimensionality of
the subspaces reflected by the weight vectors/distance matrix
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— Discussion

* Input:
— Parameters A and o that affect the dimensionality of the subspaces reflected
by the weight vectors/distance matrix
— The number k of nearest neighbors from which the weights of each point are
learned
» Output: an nxn matrix reflecting the weighted pair-wise distance between
points
» Relies on instance-based locality assumption: weight vectors of each
point is learned from its kNN; at the beginning of the loop, the kNNs are
computed in the entire d-dimensional space

» Can be used by any distance-based clustering algorithm to compute a
flat or hierarchical partitioning of the data
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* The big picture

— Subspace clustering algorithms compute overlapping clusters

« Many approaches compute all clusters in all subspaces
— These methods usually implement a bottom-up search strategy a la itemset
mining
— These methods usually rely on global density thresholds to ensure the
downward closure property
— These methods usually do not rely on the locality assumption

— These methods usually have a worst case complexity of O(29)

» Other focus on maximal dimensional subspace clusters

— These methods usually implement a bottom-up search strategy based on
simply but efficient heuristics

— These methods usually do not rely on the locality assumption
— These methods usually have a worst case complexity of at most O(d?)
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* The big picture

— Projected clustering algorithms compute a disjoint partition of the data
* They usually implement a top-down search strategy
« They usually rely on the locality assumption
* They usually do not rely on global density thresholds
» They usually scale at most quadratic in the number of dimensions
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« Challenges and Approaches, Basic Models
— Constant Biclusters
— Biclusters with Constant Values in Rows or Columns
— Pattern-based Clustering: Biclusters with Coherent

Outline:
Pattern-based Clustering

Values

— Biclusters with Coherent Evolutions

 Algorithms for

— Constant Biclusters
— Pattern-based Clustering: Biclusters with Coherent

Values

e Summary
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Pattern-based clustering relies on patterns in the data matrix.

e Simultaneous clustering of rows and columns of the data
matrix (hence biclustering).
— Data matrix A = (X,Y) with set of rows X and set of columns Y
— a,,is the element in row x and column y.

- submatrlx A, = (1,J) with subset of rows | ¢ X and subset of columns
J ¢ Y contains those elements a; withie lundj e J

Y
Ay _' v i J=j)
[
X x Ay
. TS~
I = {ix} a
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General aim of biclustering approaches:

Find a set of submatrices {(l,,J,),(l,,J,),...,(l,,J, )} of the matrix
A=(X)Y) (with|.c Xand J, c Y fori = 1,...,.k) where each
submatrix (= bicluster) meets a given homogeneity criterion.
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« Some values often used by
bicluster models:

— mean of row /: — mean of all elements:
1 1
a. :—Za.. a, =—— Za..
iJ ij J ij
‘J I ‘IHJ iel,jeJ
, 1
— mean of column J: ——Za[j
‘J jeJ
: 1
@y = ‘72% =—> a,
iel Il “
‘ iel




Different types of biclusters (cf. [MOO04]):
e constant biclusters

* biclusters with
— constant values on columns
— constant values on rows

 biclusters with coherent values (aka. pattern-based
clustering)

* biclusters with coherent evolutions




Constant biclusters
all points share identical value in selected attributes.

The constant value u is a typical value for the cluster.

Cluster model:

a; = [

Obviously a special case of an axis-parallel subspace cluster.
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Challenges and Approaches,

Basic Models

MU

« example — embedding 3-dimensional space:

al a. ad
F1 1 1 334
P L 1 e
P3 1 0.2
F4 1 1 0.7

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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DATABASE
« example — 2-dimensional subspace:
a2
Al = ‘
P1 1 1
P2 1 1 d =
P73 | 1 I
P4 | 1 | 1
T4

« points located on the bisecting line of participating attributes
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« example — transposed view of attributes:
value

Challenges and Approaches,
Basic Models

a az a3
P1 1 1 3.5
P2 1 1 3
| 1 1 0.7

« pattern: identical constant lines

+ | i
b ; 1 L
= a il K [
= 4
LMU-\.

F1

Pl e attribute

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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real-world constant biclusters will not be perfect
cluster model relaxes to:

a, = U

Optimization on matrix A = (X,Y) may lead to |X|-|Y| singularity-biclusters
each containing one entry.
Challenge: Avoid this kind of overfitting.
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Biclusters with constant values on columns
* Cluster model for A, = (I,J):

a;=pM+c,
Viel,jeJ

* adjustment value c; for column je J

* results in axis-parallel subspace clusters
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« example — 3-dimensional embedding space:

Challenges and Approaches,
Basic Models

az

al as ad i
P1 1 2 35
P2 1 2 Lt
P3 2 0.2
P4 1 2 0.7

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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al a2
o 1 2
P 1 2,
P 1 2
P4 1 2

al




£ | Challenges and Approaches,

DATABASE

e | Basic Models LMU

« example — transposed view of attributes:

val ue
al Az ad =l
=} 1 3 3.5 3
P2 1 2 23 2
2 e
P3 2 0.2
P4 1 2 0.7 1 =
P4

Fo e attribute

e pattern: identical lines
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Biclusters with constant values on rows
* Cluster model for A, = (I,J):

Viel,jeJ

« adjustment value r; for row j € |
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aar v Lk
N A
iy
T |
| |
g
LS =
=1 Il o=
gl.5
i | Ly

« example — 3-dimensional embedding space:

a2

A
al as ad
P 1 1 3.5
P s 2 2
P3 3 3 0.2
P4 4 4 0.7

* in the embedding space, points build a sparse hyperplane
parallel to irrelevant axes

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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« example — 2-dimensional subspace:
a2
A
al A 4 — 4
P1 1 1
B | 2 | 2 3 - Pt
Pa x 3 9 &
P4 | 4 | 4 p
1 - ,]”
| | I I - 31
1 2 3 4

« points are accommodated on the bisecting line of
participating attributes
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« example — transposed view of attributes:

val ue
1 2 3
4 4 = | 4 N
P1 1 1 35 =
p2 2 2 2.3 3 —
P3 3 3 0.2 2
2 )
P4 4 4 0.7
1 P4
F3 p
| | | = attribute
al & a3

e pattern: parallel constant lines
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Challenges and Approaches,

Basic Models

Biclusters with coherent values

* based on a particular form of covariance between rows
and columns

=U+r+c,
Viel,jeJ

e special cases:

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)

— ¢; =0 for all j > constant values on rows
— r;= 0 for all i > constant values on columns

iy L A oy
.l«._ *..-.-__ ':"}

LMU

.# ﬂw“

Al l“"||.--
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« embedding space: hyperplane parallel to axes of irrelevant
r
attributes 5

al az ad
F1 1 a2 35
2 2 3 2.3
FPr| 4 | 5 |02
P4 5 b 0.7
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« subspace: increasing one-dimensional line

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)

Challenges and Approaches,

Basic Models

al =
F1 1 2
e 2 3
3 4 5
F4 ] b

P " e iy
Foerr i el ik e
5 Sod ARl | R

SRR
1= _e.h
Illl-\.-'-':-‘ll:—\a.
ey
% AL R =
:""1'-]: o
= K| B §
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« transposed view of attributes:  value
i
6
5 —
al a2 a3
F1 1 2 a5 4 — P1
F2 2 3 23 3|
B ¢4 | & |82 -
F4 5 65 | 07 5
1~ P4
™3 - attribute

« pattern: parallel lines
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Biclusters with coherent evolutions

 for all rows, all pairs of attributes change simultaneously
— discretized attribute space: coherent state-transitions
— change in same direction irrespective of the quantity
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Challenges and Approaches,

Basic Models

Fine R AR B i A
Py PO R L
| 1 T [ E~%T 5 {
| I I [
= I I o | ey

[ I
Mu e B
I_ 5 l.5

« Approaches with coherent state-transitions: [TSS02,MK03]
* reduces the problem to grid-based axis-parallel approach:

al s ad
F1 05 15 3.5
P2 0.7 k3 2
P3 33 | 23 0.2
P4 ag | 21 0.7

a2
F .
3 R ¥
s e a3
2 LT St
P 4
el 3
1 iy 2
|I: i I - a1
2 3
Hr—ﬁ_\_\-\"‘l-f-__'_'-ﬂ-
0 +

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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Challenges and Approaches,

Basic Models

al a2
F1 O +
P2 O +
F4 O +
a2
3 -
'..:.&'_'.-
2 —
[ |
1 —
1
"l-._u,_.-r-m—_‘v__w'
I +

MU

a1 a2 a3
P1 05 1.5 35
=, 0.7 1.3 e
=¥ 08 2 0.7

H?r =]

T FS e attribute

3132

a3

pattern: all lines cross border between
states (in the same direction)
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« change in same direction — general idea: find a subset of
rows and columns, where a permutation of the set of
columns exists such that the values in every row are
Increasing

» clusters do not form a subspace but rather half-spaces

* related approaches:

— quantitative association rule mining [Web01,RRK04,GRRKO035]
— adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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« example — 3-dimensional embedding space

Challenges and Approaches,
Basic Models

P 1w
. ]
F o 1
¥ AR E L ke
[ P B o A
= ey
A | g
ol &
e e
o ¥
[ LA
i 1 i
# g
v ¥
&

=Y a. ad
2 05 15 35
P 0# 1.3 2
P3 33 | a5 0.2
P4 18 | 21 0.7
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« example — 2-dimensional subspace

al A
P 045 i
P 0.# 1.3
P3 03 | 05
P4 18 | 21

al
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« example — transposed view of attributes

al as ad
P A% 15 3.5
P 0.7 2
P3 03 | 05 0.2
P4 18 | 21 0.7

« pattern: all lines increasing

val ue

Foa - LA
ok e e
=N -
F g e
F ol
Fiva  BAE g oy
ey PN R
SN
A e b
[ R
f
d=rs iy !
o LSO =
B P
? i | =
i s

F1

F2

=

F3 e attribute
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Challenges and Approaches,

Matrix-Pattern Bicluster Model
=1 :
X | no change of values Constant Bicluster
o 2
2 2| change of values

more
general

y

LMU

Spatial Pattern

axis-parallel, located
on bisecting line

axis-parallel
only on /

columns axis-parallel sparse
or only Constant Columns Constant Rows hyperplane — projected
On TOws T Sspace: bisecting line

change of values
by same quantity
(shifted pattern)

axis-parallel sparse hyperplane —

Coherent Values | projected space: increasing line
(positive correlation)

state-transitions:

Coherent Evolutions

change of values
in same direction

grid-based axis-parallel
change in same direction:
half-spaces (no classical ¥

cluster-pattern)

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD ‘08)
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» classical problem statement by Hartigan [Har72]
« quality measure for a bicluster: variance of the submatrix A, ;:

VAR (4,))= Y (a, —a,, )

iel,jeld

* recursive split of data matrix into two partitions

« each split chooses the maximal reduction in the overall sum of squares
for all biclusters

« avoids partitioning into |X|-|Y| singularity-biclusters (optimizing the sum
of squares) by comparing the reduction with the reduction expected by
chance

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08)
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Algorithms for Biclusters with Constant
Values in Rows or Columns

simple approach: normalization to transform the biclusters

iInto constant biclusters and follow the first approach (e.g.
[GLDOO])

some application-driven approaches with special
assumptions in the bioinformatics community (e.g.
[CSTO0,SMD03,STG+01])

constant values on columns: general axis-parallel
subspace/projected clustering

constant values on rows: special case of general correlation
clustering

both cases special case of approaches to biclusters with
coherent values

Kriegel/Kroger/Zimek: Detecting Clusters in Moderate-to-High Dimensional Data (PAKDD '08) 08



£ | Pattern-based Clustering: Algorithms for ff?‘%";ﬁ
sorens | Biclusters with Coherent Values IMU
GROUP F ks

classical approach: Cheng&Church [CCO00]
* introduced the term biclustering to analysis of gene expression data
« quality of a bicluster: mean squared residue value H

__ g 2
H(I,J)—‘]‘Jieégaﬁ a; a[].+aU)

e submatrix (I,J) is considered a bicluster, if H(I,J) < 0
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« 0 =0 - perfect bicluster:
— each row and column exhibits absolutely consistent bias
— bias of row i w.r.t. other rows:

a,; —dy

» the model for a perfect bicluster predicts value a; by a row-constant, a
column-constant, and an overall cluster-constant:

a,=a,;+a,—a;
Bu=ap.r B 7N VAN A A ¥

a, =p1+r1,+c,
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» for a non-perfect bicluster, the prediction of the model deviates from
the true value by a residue:

a;

' =res(al.j.)+al.J +a,—a,

I

res(a;)=a, —a, —a;+a;

« This residue is the optimization criterion:

__ g 2
H([,J)_‘I‘JE;,EE% a; a1j+aﬂ)
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 The optimization is also possible for the row-residue of row i
or the column-residue of column .

« Algorithm:

1. find a o -bicluster: greedy search by removing the row or column (or
the set of rows/columns) with maximal mean squared residue until
the remaining submatrix (I,J) satisfies H(l,J)< o.

2. find a maximal o -bicluster by adding rows and columns to (l,J)
unless this would increase H.

3. replace the values of the found bicluster by random numbers and
repeat the procedure until k o -biclusters are found.

 Problems:
— finds only one cluster at a time

— masking-procedure is inefficient and probably leads to questionable
results
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p-cluster model [WWYYO02]
* p-cluster model: deterministic, greedy approach
« specializes o -bicluster-property to a pairwise property of

two objects in two attributes: / P2

P]
‘(allfl all]Z) (alzh alz]z) _5 v

difference = &

al aZ

« submatrix (I,J) is a o -p-cluster if this property is fulfilled for
any 2x2 submatrix ({/,, i,}, {1, Jo}) where {i,, i,} € | and {j,, 5}
e J.
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Algorithm:

1. create maximal set of attributes for each pair of objects
forming a o -p-cluster

2. create maximal set of objects for each pair of attributes
forming a o -p-cluster P4
FyY
3. pruning-step '/I
4. search in the set of submatrices )
l/x
b v
Problem: complete enumeration approach | |1 I'/I.
Related approaches: N 5 g

A
 FLOC [YWWYO02]: randomized v r‘l'r'/.

« MaPle [PZC+03]: improved pruning
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CoClus [CDGS04]

* marriage of a k-means-like approach with cluster models of
Hartigan or Cheng&Church

 typical flaws of k-means-like approaches:
— being caught in local minima
— requires number of clusters beforehand
— complete partition approach assumes data to contain no noise

— every attribute is assumed to be relevant for exactly one cluster
(contradiction to the prerequisites of high-dimensional data)
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Biclustering models do not fit exactly into the spatial intuition
behind subspace, projected, or correlation clustering.

Models make sense in view of a data matrix.

Strong point: the models generally do not rely on the locality
assumption.

Models differ substantially - fair comparison is a non-trivial
task.

Comparison of five methods: [PBZ+006]

Rather specialized task — comparison in a broad context
(subspace/projected/correlation clustering) is desirable.

Biclustering performs generally well on microarray data — for
a wealth of approaches see [MOO04].
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« Pattern-based approaches find simple positive correlations

 More general approach: oriented clustering aka. generalized
subspace/projected clustering aka. correlation clustering

— Note: different notion of “Correlation Clustering” in machine learning
community, e.g. cf. [BBCO04]

« Assumption: any cluster is located in an arbitrarily oriented

affine subspace S+a of Igd

St+a

Vv

\
.

N

a
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» Affine subspace S+a, S R4, affinity aeR?is interesting if a
set of points clusters within this subspace

* Points may exhibit high variance in perpendicular subspace
(RY\ S)+a

Vv
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 high variance in perpendicular subspace (R4\ S)+a -
points form a hyperplane within R4 located in this subspace
(RY\ S)+a

* Points on a hyperplane appear to follow linear dependencies
among the attributes participating in the description of the

hyperplane 0 0

Vv
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* Directions of high/low variance: PCA (local application)

* |ocality assumption: local selection of points sufficiently
reflects the hyperplane accommodating the points

» general approach: build covariance matrix X, for a selection
D of points (e.g. £ nearest neighbors of a point)

%y =3 (r=xy ) (r—x, )"

‘D xeD

x,: centroid of D properties of ZD:

O *dXxd
‘L ® « symmetric

®® - positive semidefinite

© 0 * 0), (value at row i, column j) = covariance
o O between dimensions i and

* 0, = variance in ith dimension

AN\

A\
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» decomposition of X, to eigenvalue matrix £, and eigenvector

matrix V' T
2, =VoENV,
« FE,:diagonal matrix, holding eigenvalues of ¥, in decreasing

order in its diagonal elements

« V,: orthonormal matrix with eigenvectors of X, ordered
correspondingly to the eigenvalues in £,

o 1@ * V,:new basis, first eigenvector =
@ o direction of highest variance
A « FE,:covariance matrix of D when
® '. represented in new axis system V/,

N
7
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« points forming A-dimensional hyperplane - hyperplane is
spanned by the first A eigenvectors (called "strong”
eigenvectors — notation: 7, )

* subspace where the points cluster densely is spanned by the
remaining d-A eigenvectors (called “weak™ eigenvectors —
notation: 7,)

for the eigensystem, the sum of the

.. A smallest d-A eigenvalues i:;ea_,.
° IS minimal under all possible
® 9 transformations - points cluster
e > _ optimally dense in this subspace
N ]
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model for correlation clusters [ABK+06]:

A-dimensional hyperplane accommodating the points of a
correlation cluster Cc R? is defined by an equation system of
d-A equations for d variables and the affinity (e.g. the mean
point x of all cluster members):

Vix=V]x,
equation system approximately fulfilled for all points xe C

quantitative model for the cluster allowing for probabilistic
prediction (classification)

Note: correlations are observable, linear dependencies are
merely an assumption to explain the observations —
predictive model allows for evaluation of assumptions and
experimental refinements
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ORCLUS [AYO0Q]:

first approach to generalized projected clustering
e similar ideas to PROCLUS [APW+99]

* k-means like approach

 start with k. > k seeds

 assign cluster members according to distance function
based on the eigensystem of the current cluster (starting with
axes of data space, i.e. Euclidean distance)

* reduce k., in each iteration by merging best-fitting cluster
pairs
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* best fitting pair of clusters: least average distance in the

projected space spanned by weak eigenvectors of the
merged clusters

\
ter \
. 5ensySto Cigeng
.\i‘%/"./) ... YStem cluster »
.. o ¢ @

N
7

'T‘ eigensystem cluster 1 U cluster 2
o ° 992>
.. .. .. O ®

boueysip 9PeI9NE

N

e assess average distance in all merged pairs/of clusters and
finally merge the best fitting pair
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adapt eigensystem to the updated cluster

new iteration: assign points according to updated
eigensystems (distance along weak eigenvectors)

dimensionality gradually reduced to a user-specified value /
initially exclude only eigenvectors with very high variance
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properties:
 finds k correlation clusters (user-specified)
 higher initial £, = higher runtime, probably better results

* biased to average dimensionality / of correlation clusters
(user specified)

» cluster-based locality assumption: subspace of each cluster
IS learned from its current members (starting in the full
dimensional space)
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4C [BKKZ04]

* density-based cluster-paradigm (cf. DBSCAN [EKSX96])

« extend a cluster from a seed as long as a density-criterion is
fulfilled — otherwise pick another seed unless all data base
objects are assigned to a cluster or noise

 density criterion: minimal required number of points in the
neighborhood of a point

* neighborhood: distance between two points ascertained
based on the eigensystems of both compared points
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eigensystem of a point p based on its e-neighborhood in
Euclidean space

threshold o discerns large from small eigenvalues

in eigenvalue matrix E, replace large eigenvalues by 1, small
eigenvalues by k>>1

adapted eigenvalue matrix yields a correlation similarity
matrix for point p: R
VpEpr
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 effect on distance measure:

Vv

- distance of p and qw.r.t.p:\/(p_Q)'Vp 'E; 'VpT ‘(p_Q)T

 distance of p and g w.r.t. g: \/(q —p)- Vq ‘E; 'VqT '(q _P)T
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« symmetry of distance measure by choosing the maximum:

max <&
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properties:
 finds arbitrary number of clusters

* requires specification of density-thresholds
— u (minimum number of points): rather intuitive
— ¢ (radius of neighborhood): hard to guess

« biased to maximal dimensionality A of correlation clusters
(user specified)

* instance-based locality assumption: correlation distance
measure specifying the subspace is learned from local
neighborhood of each point in the d-dimensional space

enhancements:
« COPAC [ABK+07c]: more efficient and robust
 ERIC [ABK+07Db]: finds hierarchies of correlation clusters
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different correlation primitive: Hough-transform

e points in data space are mapped to functions in the
parameter space

1 )
g B _
e
" P fp_l-
; fﬂz
2 - T 1y
. fFl “
- ‘
- .lul / o
o ' o g (EI:;"-'(??)
SN . . . .

picture space x parameter space o

 functions in the parameter space define all lines possibly
crossing the point in the data space
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* Properties of the transformation
— Point in the data space = sinusoidal curve in parameter space
— Point in parameter space = hyper-plane in data space

— Points on a common hyper-plane in data space = sinusoidal curves
intersecting in a common point in parameter space

— Intersections of sinusoidal curves in parameter space = hyper-plane

accommodating the corresponding points in data space
P
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Algorithm based on the Hough-transform: CASH [ABD+08]

Correlation Clustering Algorithms

}:H

lie 1 H
& lire
li._
o
@
=N o
C1-%
el
]
o
= o
o
C2 .
ok -]
=]
=]
. =]
E =]
1]
m b i} 4
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dense regions in parameter space correspond to linear

structures in data space

dense region

cluster C1 dense’region =

cluster C2
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ldea: find dense regions in parameter space

» construct a grid by recursively splitting the parameter space
(best-first-search)

 identify dense grid cells as intersected by many
parametrization functions

« dense grid cell represents (d-7)-dimensional linear structure

« transform corresponding data objects in corresponding (d-17)-
dimensional space and repeat the search recursively
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properties:
 finds arbitrary number of clusters

 requires specification of depth of search (number of splits
per axis)

* requires minimum density threshold for a grid cell

* Note: this minimum density does not relate to the locality
assumption: CASH is a global approach to correlation
clustering

« search heuristic: linear in number of points, but ~ g4
« But: complete enumeration in worst case (exponential in d)
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PCA: mature technique, allows construction of a broad range
of similarity measures for local correlation of attributes

drawback: all approaches suffer from locality assumption

successfully employing PCA in correlation clustering in
“really” high-dimensional data requires more effort
henceforth

new approach based on Hough-transform:
— does not rely on locality assumption
— but worst case again complete enumeration
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« some preliminary approaches base on concept of self-
similarity (intrinsic dimensionality, fractal dimension):
[BCOO,PTTF02,GHPTO3]

* interesting idea, provides quite a different basis to grasp
correlations in addition to PCA

« drawback: self-similarity assumes locality of patterns even
by definition
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comparison: correlation clustering — biclustering:
« model for correlation clusters more general and meaningful
« models for biclusters rather specialized

* In general, biclustering approaches do not rely on locality
assumption

* non-local approach and specialization of models may make
biclustering successful in many applications

« correlation clustering is the more general approach but the
approaches proposed so far are rather a first draft to tackle
the complex problem
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Summary

« Let's take a global view:

Traditional clustering in high dimensional spaces is most likely
meaningless with increasing dimensionality (curse of dimensionality)

Clusters may be found in (generally arbitrarily oriented) subspaces of
the data space

So the general problem of clustering high dimensional data is:
“find a partitioning of the data where each cluster may exist in its own
subspace”
* The partitioning need not be unique (clusters may overlap)
 The subspaces may be axis-parallel or arbitrarily oriented
Analysis of this general problem:

» A naive solution would examine all possible subspaces to look for
clusters

* The search space of all possible arbitrarily oriented subspaces is infinite
* We need assumptions and heuristics to develop a feasible solution
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— What assumptions did we get to know here?
* The search space is restricted to certain subspaces

A clustering criterion that implements the downward closure property
enables efficient search heuristics

* The locality assumption enables efficient search heuristics

« Assuming simple additive models (“patterns™) enables efficient search
heuristics

— Remember: also the clustering model may rely on further
assumptions that have nothing to do with the infinite search space
* Number of clusters need to be specified
* Results are not deterministic e.g. due to randomized procedures

— We can classify the existing approaches according to the
assumptions they made to conquer the infinite search space
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— The global view

» Subspace clustering/projected clustering:
— The search space is restricted to axis-parallel subspaces

— A clustering criterion that implements the downward closure property is
defined (usually based on a global density threshold)

— The locality assumption enables efficient search heuristics
 Bi-clustering/pattern-based clustering:

— The search space is restricted to special forms and locations of subspaces or
half-spaces

— Greedy-search based on statistical assumptions

« Correlation clustering:
— The locality assumption enables efficient search heuristics

— Any of the proposed methods is based on at least one assumption
because otherwise, it would not be applicable




1S NG OT ASTOU

uonelanua Mapduwos Surpioae

LMU

DINIDNIIS [EIT2IRIN

Areuoisuawnp asedsqns Aaenigae

saoedsqns pue s1msn)o
surddepaso Ajsnoauwnuirs

saoedsqns Suiddepiaao

sia1sn> Surddepiaso

STASN[D JO Jaquinu ATenigie

DTS TUTLLLI )2 P

s1o0alqo 10 JapIo
s uapuadapur

SaINQUNE Jo IapIo
11 uapuadapun

proysamnp Asuap aandepe

nondwnsse Ajpeso] uo SUTA[a1 10U

[eered siye

uoneaII00 aaneiau apduns

uone2o0 aamisod apduns

suone 21100 xapduoo

Summary

Aleorithm

=

DATABASE
SYSTEMS
GROUP

137

C [MSEO6]
)SA [FM(4]
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-
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PROCLUS [APWT99]
DiSH [ABKT07a]
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 How can we evaluate which assumption is better under
which conditions?

— Basically there is no comprehensive comparison on the accuracy or
efficiency of the discussed methods

— A fair comparison on the efficiency is only possible in sight of the
assumptions and heuristics used by the single methods

— An algorithm performs bad if it has more restrictions AND needs more
time

— Being less efficient but more general should be acceptable




— What we find in the papers is

* Head-to-head comparison with at most one or two competitors that do
have similar assumptions

« But that can be really misleading!!!
« Sometimes there is even no comparison at all to other approaches
« Sometimes the experimental evaluations are rather poor

— So how can we decide which algorithm to use for a given problem?

 Actually, we cannot ®
« However, we can sketch what makes a sound evaluation
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 How should a sound experimental evaluation of the accuracy

look like — an example using gene expression data

[Thanks to the anonymous reviewers for their suggestions even though we would have
preferred an ACCEPT ;-)]

— Good:
* Apply your method to cluster the genes of a publicly available gene
expression data set => you should get clusters of genes with similar
functions

* Do not only report that your method has found some clusters (because
even e.g. the full-dimensional k-means would have done so)

* Analyze your clusters: do the genes have similar functions?

— Sure, we are computer scientists, not biologists, but ...

— In publicly available databases you can find annotations for (even most of)
the genes

— These annotations can be used as class labels, so consistency measures
can be computed
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— Even better
« |dentify competing methods (that have similar assumptions like your

approach)
» Run the same experiments (see above) with the competing approaches

* Your method is very valuable if
— your clusters have a higher consistency score

[OK, you are the winner]

OR
— your clusters have a lower (but still reasonably high) score and represent
functional groups of genes that clearly differ from that found by the

competitors
[you can obviously find other biologically relevant facts that could not be

found by your competitors]
* Open question: what is a suitable consistency score for subspace

clusters?




— Premium

* You have a domain expert as partner who can analyze your clustering
results in order to

— Prove and/or refine his/her existing hypothesis
— Derive new hypotheses

Lucky you — that’s why we should make data mining ©
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