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Coverage and Objective of the Tutorial

I We assume that you know in general what outlier
detection is about and have a rough idea of how classic
approaches (e.g., LOF [Breunig et al., 2000]) work.

I We focus on unsupervised methods for numerical
vector data (Euclidean space).

I We discuss the specific problems in high-dimensional
data.

I We discuss strategies as well as the strengths and
weaknesses of methods that specialize in
high-dimensional data in order to

I enhance efficiency or effectiveness and stability
I search for outliers in subspaces
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Coverage and Objective of the Tutorial

I These slides are available at:
http://www.dbs.ifi.lmu.de/cms/Publications/

OutlierHighDimensional

I This tutorial is closely related to our survey article
[Zimek et al., 2012], where you find more details.

I Feel free to ask questions at any time!
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Reminder: Distance-based Outliers

DB(ε, π)-outlier [Knorr and Ng, 1997]
I given ε, π
I A point p is considered an outlier if at most π percent of

all other points have a distance to p less than ε

p1



p2

p3

OutlierSet(ε, π) =
{

p
∣∣∣∣Cardinality(q ∈ DB|dist(q, p) < ε)

Cardinality(DB)
≤ π

}
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Reminder: Distance-based Outliers

Outlier scoring based on kNN distances:
I Take the kNN distance of a point as its outlier score

[Ramaswamy et al., 2000]
I Aggregate the distances for the 1-NN, 2-NN, . . . , kNN

(sum, average) [Angiulli and Pizzuti, 2002]

p1

p2

p3
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Reminder: Density-based Local Outliers

C 2

C 1

o 2
o 1

Figure from Breunig et al. [2000].

I DB-outlier model: no
parameters ε, π such that o2 is
an outlier but none of the points
of C1 is an outlier

I kNN-outlier model:
kNN-distances of points in C1
are larger than kNN-distances
of o2
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Reminder: Density-based Local Outliers

Local Outlier Factor (LOF) [Breunig et al., 2000]:

I reachability distance (smoothing factor):
reachdistk(p, o) = max{kdist(o), dist(p, o)}

I local reachability distance (lrd)
lrdk(p) = 1/

∑
o∈kNN(p) reachdistk(p,o)

Cardinality(kNN(p))

I Local outlier factor (LOF) of point p:
average ratio of lrds of neighbors of p
and lrd of p

Figure from [Breunig et al., 2000]

LOFk(p) =

∑
o∈kNN(p)

lrdk(o)
lrdk(p)

Cardinality(kNN(p))

I LOF ≈ 1: homogeneous density
I LOF� 1: point is an outlier (meaning of “�” ?)
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Concentration of Distances

Theorem 1 (Beyer et al. [1999])
Assumption The ratio of the variance of the length of any

point vector (denoted by ‖Xd‖) with the length
of the mean point vector (denoted by E[‖Xd‖])
converges to zero with increasing data
dimensionality.

Consequence The proportional difference between the
farthest-point distance Dmax and the
closest-point distance Dmin (the relative
contrast) vanishes.

If lim
d→∞

var
(
‖Xd‖

E[‖Xd‖]

)
= 0, then

Dmax − Dmin

Dmin
→ 0.
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Vector Length: Loss of Contrast

Sample of 105 instances drawn from a uniform [0, 1]
distribution, normalized (1/

√
d).
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Vector Length: Loss of Contrast

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution, normalized (1/

√
d).
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Pairwise Distances

Sample of 105 instances drawn from a uniform [0, 1]
distribution, normalized (1/

√
d).
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Pairwise Distances

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution, normalized (1/

√
d).
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50-NN Outlier Score

Sample of 105 instances drawn from a uniform [0, 1]
distribution, normalized (1/

√
d). kNN outlier score

[Ramaswamy et al., 2000] for k = 50.
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50-NN Outlier Score

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution, normalized (1/

√
d). kNN outlier score

[Ramaswamy et al., 2000] for k = 50.
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LOF Outlier Score

Sample of 105 instances drawn from a uniform [0, 1]
distribution, LOF [Breunig et al., 2000] score for
neighborhood size 50.
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LOF Outlier Score

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution, LOF [Breunig et al., 2000] score for
neighborhood size 50.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  10  100  1000

L
O

F
 o

u
tl

ie
r 

sc
o

re

Dimensionality

Mean +- stddev Actual min Actual max

15



Outlier
Detection
in High-

Dimensional
Data

A. Zimek,
E. Schubert,
H.-P. Kriegel

Introduction

“Curse of
Dimensionality”

Concentration

Irrelevant Attributes

Discrimination

Combinatorics

Hubness

Consequences

Efficiency and
Effectiveness

Subspace Outlier

Discussion

References

Pairwise Distances with Outlier

Sample of 105 instances drawn from a uniform [0, 1]
distribution, normalized (1/

√
d).

Outlier manually placed at 0.9 in every dimension.
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Pairwise Distances with Outlier

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution, normalized (1/

√
d).

Outlier manually placed at 2σ in every dimension.
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LOF Outlier Score with Outlier

Sample of 105 instances drawn from a uniform [0, 1]
distribution.
Outlier manually placed at 0.9 in every dimension, LOF
[Breunig et al., 2000] score for neighborhood size 50.
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LOF Outlier Score with Outlier

Sample of 105 instances drawn from a Gaussian (0, 1)
distribution.
Outlier manually placed at 2σ in every dimension, LOF
[Breunig et al., 2000] score for neighborhood size 50.
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Conclusion

I The concentration effect per se is not the main problem
for mining high-dimensional data.

I If points deviate in every attribute from the usual data
distribution, the outlier characteristics will become more
pronounced with increasing dimensionality.

I More dimensions add more information for
discriminating the different characteristics.
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Separation of Clusters –
“Meaningful” Nearest Neighbors

Theorem 2 (Bennett et al. [1999])

Assumption Two clusters are pairwise stable, i.e., the
between cluster distance dominates the within
cluster distance.

Consequence We can meaningfully discern “near”
neighbors (members of the same cluster) from
“far” neighbors (members of the other cluster).

I This is the case if enough information (relevant
attributes) is provided to separate different distributions.

I Irrelevant attributes can mask the separation of clusters
or outliers.
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Relevant and Irrelevant Attributes

Sample of 105 instances drawn from a uniform [0, 1] distribution.
Fixed dimensionality d = 100.
Outlier manually placed at 0.9 in relevant dimensions, in irrelevant
dimensions the attribute values for the outlier are drawn from the
usual random distribution.
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Relevant and Irrelevant Attributes

Sample of 105 instances drawn from a Gaussian (0, 1) distribution.
Fixed dimensionality d = 100.
Outlier manually placed at 2σ in relevant dimensions, in irrelevant
dimensions the attribute values for the outlier are drawn from the
usual random distribution.
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Conclusion

I Motivation for subspace outlier detection: find outliers in
the relevant subspaces

I Challenge of identifying relevant attributes
I even more: different attributes may be relevant for

identifying different outliers
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Discrimination of Distance Values

I distance concentration: low contrast of distance values
of points from the same distribution

I other side of the coin: hard to choose a distance
threshold to distinguish between near and far points
(e.g. for distance queries)
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Illustration: “Shrinking” (?) Hyperspheres
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Illustration: “Shrinking” (?) Hyperspheres

25



Outlier
Detection
in High-

Dimensional
Data

A. Zimek,
E. Schubert,
H.-P. Kriegel

Introduction

“Curse of
Dimensionality”

Concentration

Irrelevant Attributes

Discrimination

Combinatorics

Hubness

Consequences

Efficiency and
Effectiveness

Subspace Outlier

Discussion

References

Illustration: “Shrinking” (?) Hyperspheres
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Illustration: “Shrinking” (?) Hyperspheres
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Illustration: “Shrinking” (?) Hyperspheres
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Meaningful Choice of Distance Thresholds?

I distance values are not comparable over data
(sub-)spaces of different dimensionality

I ε-range queries for high-dimensional data are hard to
parameterize

I some change of ε may have no effect in some
dimensionality and may decide whether nothing or
everything is retrieved in some other dimensionality

I density-thresholds are in the same way notoriously
sensitive to dimensionality
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Distance Rankings –
“Meaningful” Nearest Neighbors

I Even if absolute distance values are not helpful,
distance rankings can be.

I Shared-neighbor information is based on these findings
[Houle et al., 2010].

I In the same way, often
I outlier rankings are good but
I the absolute values of the outlier scores are not helpful.

27



Outlier
Detection
in High-

Dimensional
Data

A. Zimek,
E. Schubert,
H.-P. Kriegel

Introduction

“Curse of
Dimensionality”

Concentration

Irrelevant Attributes

Discrimination

Combinatorics

Hubness

Consequences

Efficiency and
Effectiveness

Subspace Outlier

Discussion

References

Conclusion

a sample containing outliers would show up such
characteristics as large gaps between ‘outlying’
and ‘inlying’ observations and the deviation
between outliers and the group of inliers, as
measured on some suitably standardized scale

[Hawkins, 1980]

I outlier rankings may be still good while the underlying
outlier scores do not allow to separate between outliers
and inliers

I outlier scores are in many models influenced by
distance values, that substantially vary over different
dimensionality – how can these scores be compared?
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Combinatorial Explosion: Statistics

I for a normal distribution, an object is farther away from
the mean than 3× σ in a single dimension with a
probability of ≈ 0.27% = 1− 0.9973

I for d independently normally distributed dimensions,
the combined probability of an object appearing to be
normal in every single dimension is ≈ 0.9973d

d = 10 : 97.33%

d = 100 : 76.31%

d = 1000 : 6.696%

I in high-dimensional distributions, every object is
extreme in at least one dimension

I selected subspaces for outliers need to be tested
independently
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Combinatorial Explosion: Subspace Selection

I 2d axis-parallel subspaces of a d-dimensional space
I grid-based approaches: 10 bins in each dimension

d = 2 : 102 cells (i.e., one hundred)

d = 100 : 10100 cells (i.e., one googol)

I need at least as many objects for the cells to not
already be empty on average

I need even more to draw statistically valid conclusions
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Conclusion

I exploding model search space requires improved
search heuristics, many established approaches
(thresholds, grids, distance functions) no longer work

I evaluating an object against many possible subspaces
can introduce a statistical bias (“data snooping”)

I Try to do proper statistical hypothesis testing!
I Example: choose few candidate subspaces without

knowing the candidate object!
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Hubness

I k-hubness of an object o: Nk(o): the number of times a
point o is counted as one of the k nearest neighbors of
any other point in the data set

I with increasing dimensionality, many points show a
small or intermediate hubness while some points exhibit
a very high hubness [Radovanović et al., 2009, 2010]

I related to Zipf’s law on word frequencies
I Zipfian distributions frequently seen in social networks
I interpreting the kNN graph as social network, ‘hubs’ as

very popular neighbors
I “Fact or Artifact?” [Low et al., 2013] – not necessarily

present in high-dimensional data, and can also occur in
low-dimensional data
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Conclusion

I what does this mean for outlier detection?
– it is the “Hubs” which are infrequent, but central!

I the other side of the coin:
anti-hubs might exist that are far away from most other
points (i.e., qualify as kNN outliers) yet they are not
unusual
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Consequences

Problem 1 (Concentration of Scores)

Due to the central limit theorem, the distances of
attribute-wise i.i.d. distributed objects converge to an
approximately normal distribution with low variance,
giving way to numerical and parametrization issues.
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Problem 2 (Noise attributes)

A high portion of irrelevant (not discriminative) attributes can
mask the relevant distances.
We need a good signal-to-noise ratio.
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Problem 3 (Definition of Reference-Sets)

Common notions of locality (for local outlier detection) rely
on distance-based neighborhoods, which often leads to the
vicious circle of needing to know the neighbors to choose
the right subspace, and needing to know the right subspace
to find appropriate neighbors.
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Problem 4 (Bias of Scores)

Scores based on Lp norms are biased towards high
dimensional subspaces, if they are not normalized
appropriately. In particular, distances in different
dimensionality (and thus distances measured in different
subspaces) are not directly comparable.
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Problem 5 (Interpretation & Contrast of Scores)

Distances and distance-derived scores may still provide a
reasonable ranking, while (due to concentration) the scores
appear to be virtually identical. Choosing a threshold
boundary between inliers and outliers based on the distance
or score may be virtually impossible.
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Problem 6 (Exponential Search Space)

The number of potential subspaces grows exponentially
with the dimensionality, making it increasingly hard to
systematically scan through the search space.
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Problem 7 (Data-snooping Bias)

Given enough subspaces, we can find at least one
subspace such that the point appears to be an outlier.
Statistical principles of testing the hypothesis on a different
set of objects need be employed.
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Problem 8 (Hubness)

What is the relationship of hubness and outlier degree?
While antihubs may exhibit a certain affinity to also being
recognized as distance-based outliers, hubs are also rare
and unusual and, thus, possibly are outliers in a probabilistic
sense.
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Efficiency and Effectiveness

I dimensionality reduction / feature selection (e.g., Vu
and Gopalkrishnan [2010]) – find all outliers in the
remaining or transformed feature space

I global dimensionality reduction (e.g., by PCA) is likely
to fail in the typical subspace setting [Keller et al., 2012]

I here, we discuss methods that
I try to find outliers in the full space (present section) and

I enhance efficiency
I enhance effectiveness and stability

I identify potentially different subspaces for different
outliers (next section)
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Approximate Neighborhoods:
Random Projection

I Locality sensitive hashing (LSH) [Indyk and Motwani,
1998]: based on approximate neighborhoods in
projections

I key ingredient:

Lemma 3 (Johnson and Lindenstrauss [1984])
There exist projections of n objects into a lower dimensional
space (dimensionality O(log n/ε2)) such that the distances
are preserved within a factor of 1 + ε.

I note: reduced dimensionality depends on number of
objects and error-bounds, but not on the original
dimensionality

I popular technique: “database-friendly” (i.e., efficient)
random projections [Achlioptas, 2001]

48



Outlier
Detection
in High-

Dimensional
Data

A. Zimek,
E. Schubert,
H.-P. Kriegel

Introduction

“Curse of
Dimensionality”

Efficiency and
Effectiveness

Fundamental
Efficiency
Techniques

Methods: Efficiency

Methods:
Effectiveness and
Stability

Subspace Outlier

Discussion

References

Approximate Neighborhoods:
Space-filling Curves

I space-filling curves, like Peano [1890], Hilbert [1891],
or the Z-curve [Morton, 1966], do not directly preserve
distances but – to a certain extend – neighborhoods

I a one-dimensional fractal curve gets arbitrarily close to
every data point without intersecting itself

I intuitive interpretation:
repeated cuts, opening the
data space

I neighborhoods are not well
preserved along these cuts

I number of cuts increases
with the dimensionality
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Recursive Binning and Re-projection (RBRP)

RBRP [Ghoting et al., 2008]: adaptation of ORCA [Bay and
Schwabacher, 2003] to high-dimensional data, based on a
combination of binning and projecting the data

I first phase: bin the data, recursively, into k clusters
results in k bins, and again, in each bin, k bins and so forth, unless a bin

does not contain a sufficient number of points

I second phase: approximate neighbors are listed
following their linear order as projected onto the
principal component of each bin
within each bin (as long as necessary): a variant of the nested loop

algorithm [Bay and Schwabacher, 2003] derives the top-n outliers

I resulting outliers are reported to be the same as
delivered by ORCA but retrieved more efficiently in
high-dimensional data
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Locality Sensitive Outlier Detection (LSOD)

LSOD [Wang et al., 2011]: combination of approximate
neighborhood search (here based on LSH) and data
partitioning step using a k-means type clustering

I idea of outlierness: points in sparse buckets will
probably have fewer neighbors and are therefore more
likely to be (distance-based) outliers

I pruning is based on a ranking of this outlier likelihood,
using statistics on the partitions

I the authors conjecture that their approach “can be used
in conjunction with any outlier detection algorithm”

I actually, however, the intuition is closely tied to a
distance-based notion of outlierness
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Projection-indexed Nearest Neighbors (PINN)

I PINN [de Vries et al., 2010, 2012] uses Johnson and
Lindenstrauss [1984] lemma

I random projections [Achlioptas, 2001] preserve
distances approximately

I preserve also neighborhoods approximately
[de Vries et al., 2010, 2012]

I use projected index (kd-tree, R-tree), query more
neighbors than needed

I refine found neighbors to get almost-perfect neighbors
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Projection-indexed Nearest Neighbors (PINN)

(Figure by M. E. Houle)
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Projection-indexed Nearest Neighbors (PINN)

Advertisement
fundamentals on generalized expansion dimension:
Houle et al. [2012a] at yesterday’s workshop
application to similarity search:
Houle et al. [2012b] (talk tomorrow morning)
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Space-filling Curves

I Angiulli and Pizzuti [2002, 2005] find top N
k-NN-outliers exactly, saves by detecting true misses

I project data to Hilbert curve [Hilbert, 1891]
I sort data, process via sliding window
I multiple scans with shifted curves,

refining top candidates and skipping true misses
I good for large data sets in low dimensionality:
I Minkowski norms only – suffers from distance

concentration: few true misses in high-dimensional data
I Hilbert curves ∼ grid based approaches:

ld bits when l bits per dimension
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Angle-based Outlier Detection

ABOD [Kriegel et al., 2008] uses the variance of angles
between points as an outlier degree

I angles more stable than distances
I outlier: other objects are clustered⇒ some directions
I inlier: other objects are surrounding⇒ many directions
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Angle-based Outlier Detection

I consider for a given point p the angle
between ~px and ~py for any two x, y from
the database

I for each point, a measure of variance of
all these angles is an outlier score
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Angle-based Outlier Detection

I consider for a given point p the angle
between ~px and ~py for any two x, y from
the database

I for each point, a measure of variance of
all these angles is an outlier score
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Angle-based Outlier Detection

I ABOD: cubic time complexity
I FastABOD [Kriegel et al., 2008]: approximation based

on samples⇒ quadratic time complexity
I LB-ABOD [Kriegel et al., 2008]: approximation as

filter-refinement⇒ quadratic time complexity
I approximation based on random-projections and a

simplified model [Pham and Pagh, 2012]⇒ O(n log n)
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Feature Subset Combination

“Feature bagging” [Lazarevic and Kumar, 2005]:

I run outlier detection (e.g., LOF) in
several random feature subsets
(subspaces)

I combine the results to an
ensemble

Subspace 1

Subspace 2

Subspace 3

Subspace 4

Ensemble}
I not a specific approach for high-dimensional data but

provides efficiency gains by computations on
subspaces and effectiveness gains by ensemble
technique

I application to high-dimensional data with improved
combination: Nguyen et al. [2010]
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Outlier Detection Ensembles

Outlier scores in different subspaces scale differently, have
different meaning (Problem 4). Direct combination is
problematic.

I improved reasoning about combination,
normalization of scores, ensembles of different
methods: Kriegel et al. [2011]

I study of the impact of diversity on ensemble outlier
detection: Schubert et al. [2012a]

In general, ensemble techniques for outlier detection have
potential to address problems associated with
high-dimensional data. Research here has only begun.
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Outliers in Subspaces

I feature bagging uses random subspaces to derive a full
dimensional result

I “subspace outlier detection” aims at finding outliers in
relevant subspaces that are not outliers in the
full-dimensional space (where they are covered by
“irrelevant” attributes)

I predominant issues are
1. identification of subspaces:

Which subspace is relevant and why?
(recall data snooping bias, Problem 7)

2. comparability of outlier scores:
How to compare outlier results from different subspaces
(of different dimensionality)?
(cf. Problem 4: Bias of Scores)
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Subspace Outlier Detection

common Apriori [Agrawal and Srikant, 1994]-like procedure
for subspace clustering [Kriegel et al., 2009c, 2012b, Sim
et al., 2012]:

I evaluate all n-dimensional subspaces (e.g., look for
clusters in the corresponding subspace)

I combine all “interesting” (e.g., containing clusters)
n-dim. subspaces (i.e., “candidates”) to n + 1-dim.
subspaces

I start with 1-dim. subspaces and repeat this bottom-up
search until no candidate subspaces remain

I requirement: anti-monotonicity of the criterion of
“interestingness” (usually the presence of clusters)

unfortunately, no meaningful outlier criterion is known so far
that behaves anti-monotoneously
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Subspace Outlier Detection

first approach for high-dimensional (subspace) outlier
detection: Aggarwal and Yu [2001]

I resembles a grid-based subspace clustering approach but
not searching dense but sparse grid cells

I report objects contained within sparse grid cells as outliers

I evolutionary search for those grid cells (Apriori-like search
not possible, complete search not feasible)

I divide data space in φ equi-depth cells
I each 1-dim. hyper-cuboid contains

f = N
φ

objects

I expected number of objects in k-dim.
hyper-cuboid: N · f k

I standard deviation:
√

N · f k · (1− f k)

I “sparse” grid cells: contain
unexpectedly few data objects
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Problems of Aggarwal and Yu [2001]

I with increasing dimensionality, the expected value of a grid cell quickly
becomes too low to find significantly sparse grid cells⇒ only small values
for k meaningful (Problem 6: Exponential Search Space)

I parameter k must be fixed, as the scores are not comparable across
different values of k (Problem 4)

I search space is too large even for a fixed k⇒ genetic search preserving the
value of k across mutations (Problem 6)

I restricted computation time allows only inspection of a tiny subset of the
(n

k

)
projections (not yet to speak of individual subspaces); randomized search
strategy does encourage neither fast enough convergence nor diversity⇒
no guarantees about the outliers detected or missed

I randomized model optimization without a statistical control⇒ statistical bias
(Problem 7): how meaningful are the detected outliers?

I presence of clusters in the data set will skew the results considerably
I equidepth binning is likely to include outliers in the grid cell of a nearby

cluster⇒ hide them from detection entirely
I dense areas also need to be refined to detect outliers that happen to fall into

a cluster bin
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HOS-Miner

Zhang et al. [2004] identify the subspaces in which a given
point is an outlier

I define the outlying degree of a point w.r.t. a certain space (or
possibly a subspace) s in terms of the sum of distances to
the k nearest neighbors in this (sub-)space s

I for a fixed subspace s, this is the outlier model of Angiulli and
Pizzuti [2002]

I monotonic behavior over subspaces and superspaces of s,
since the outlying degree OD is directly related to the
distance-values; for Lp-norms the following property holds for
any object o and subspaces s1, s2:
ODs1(o) ≥ ODs2(o) ⇐⇒ s1 ⊇ s2

I Apriori-like search for outlying subspaces for any query
point: threshold T discriminates outliers (ODs(o) ≥ T) from
inliers (ODs(o) < T) in any subspace s
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Problems of HOS-Miner [Zhang et al., 2004]

I fixed threshold to discern outliers w.r.t. their score OD in
subspaces of different dimensionality⇒ these scores
are rather incomparable (Problem 4)

I the monotonicity must not be fulfilled for true subspace
outliers (since it would imply that the outlier can be
found trivially in the full-dimensional space) — as
pointed out by Nguyen et al. [2011]

I systematic search for the subspace with the highest
score⇒ data-snooping bias (Problem 7)
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OutRank

Müller et al. [2008] analyse the result of some
(grid-based/density-based) subspace clustering algorithm

I clusters are more stable than outliers to identify in
different subspaces

I avoids statistical bias
I outlierness: how often is the object recognized as part

of a cluster and what is the dimensionality and size of
the corr. subspace clusters
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Problems of OutRank [Müller et al., 2008]

I a strong redundancy in the clustering is implicitly
assumed — result biased towards (anti-)hubs?
(Problem 8)

I outliers as just a side-product of density-based
clustering can result in a large set of outliers

I outlier detection based on subspace clustering relies on
the subspace clusters being well separated

I Theorem 2 (Separation of Clusters)
I Problem 1 (Concentration Effect)
I Problem 2 (Noise Attributes)
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Problems of OutRank [Müller et al., 2008]

I a strong redundancy in the clustering is implicitly
assumed — result biased towards (anti-)hubs?
(Problem 8)

I outliers as just a side-product of density-based
clustering can result in a large set of outliers

I outlier detection based on subspace clustering relies on
the subspace clusters being well separated

I Theorem 2 (Separation of Clusters)
I Problem 1 (Concentration Effect)
I Problem 2 (Noise Attributes)

Advertisement
note a follow-up on this workshop paper at this ICDM:
Müller et al. [2012] (talk tomorrow morning)
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SOD

SOD (subspace outlier detection) [Kriegel et al., 2009a]
finds outliers in subspaces without an explicit clustering

I a reference set is possibly defining
(implicitly) a subspace cluster (or
a part of such a cluster)

I If the query point deviates
considerably from the subspace of
the reference set, it is a subspace
outlier w.r.t. the corresponding
subspace.

I not a decision (outlier vs. inlier)
but a (normalized, sort of)
subspace distance outlier score
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Problems of SOD [Kriegel et al., 2009a]

I how to find a good reference set (Problem 3)?
Kriegel et al. [2009a] define the reference-set using
SNN-distance [Houle et al., 2010], which introduces a
second neighborhood parameter

I normalization of scores is over-simplistic
interpretation as “probability estimates” of the (subspace)
distance distribution would be a desirable post-processing to
tackle Problem 5 (Interpretation and Contrast of Scores)
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OUTRES [Müller et al., 2010]

I assess deviations of each object in several subspaces
simultaneously

I combine ranking of the objects according to their outlier
scores in all ‘relevant subspaces’

I requires comparable neighborhoods (Problem 3) for
each point to estimate densities

I adjust for different number of dimensions of subspaces
(Problem 4): specific ε radius for each subspace

I score in a single subspace: comparing the object’s
density to the average density of its neighborhood

I total score of an object is the product of all its scores in
all relevant subspaces

Assuming a score in [0, 1] (smaller score ∝ stronger outlier),
this should provide a good contrast for those outliers with
very small scores in many relevant subspaces.73
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OUTRES 2 [Müller et al., 2011]

follow-up paper [Müller et al., 2011] describes selection of
relevant subspaces

I reject attributes with uniformly distributed values in the
neighborhood of the currently considered point o
(statistical significance test)

I exclude, for this o, also any superspaces of uniformly
distributed attributes

I Apriori-like search strategy can be applied to find
subspaces for each point

I tackles the problem of noise attributes (Problem 2)
I based on a statistic on the neighborhood of the point⇒

not likely susceptible to a statistical bias (Problem 7)
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Problems of OUTRES
[Müller et al., 2010, 2011]

tackling many problems comes for a price:
I Apriori-like search strategy finds subspaces for each

point, not outliers in the subspaces⇒ expensive
approach: worst-case exponential behavior in
dimensionality

I score adaptation to locally varying densities as the
score of a point o is based on a comparison of the
density around o vs. the average density among the
neighbors of o (∼ LOF [Breunig et al., 2000])⇒ time
complexity O(n3) for a database of n objects unless
suitable data structures (e.g., precomputed
neighborhoods) are used

I due to the adaptation to different dimensionality of
subspaces, data structure support is not trivial
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HighDOD

HighDOD (High-dimensional Distance-based Outlier
Detection) [Nguyen et al., 2011]:

I motivation: the sum of distances to the k nearest
neighbors as the outlier score [Angiulli and Pizzuti,
2005] is monotonic over subspaces – but a subspace
search (as in HOS-Miner) is pointless as the maximum
score will appear in the full-dimensional space

I modify the kNN-weight outlier score to use a
normalized Lp norm

I pruning of subspaces is impossible, examine all
subspaces up to a user-defined maximum
dimensionality m

I use a linear-time (O(n · m)) density estimation to
generate outlier candidates they compute the nearest
neighbors for
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Problems of HighDOD [Nguyen et al., 2011]

I examine all subspaces⇒ data-snooping (Problem 7)?
I no normalization to adjust different variances in

different dimensionality
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HiCS [Keller et al., 2012]

high contrast subspaces (HiCS) [Keller et al., 2012]
I core concept for subspaces with high contrast:

correlation among the attributes of a subspace
(deviation of the observed PDF from the expected PDF, assuming

independence of the attributes)

I Monte Carlo samples to aggregate these deviations
I aggregate the LOF scores for a single object over all

“high contrast” subspaces
I the authors suggest that, instead of LOF, any other

outlier measure could be used
I intuition: in these subspaces, outliers are not trivial

(e.g., identifiable already in 1-dimensional subspaces)
but deviate from the (although probably non-linear and
complex) correlation trend exhibited by the majority of
data in this subspace
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Problems of HiCS [Keller et al., 2012]

I combine LOF scores from subspaces of different
dimensionality without score normalization (Problem 4:
Bias of Scores)

I combination of scores is rather naïve, could benefit
from ensemble reasoning

I philosophy of decoupling subspace search and outlier
ranking is questionable:

I a certain measure of contrast to identify interesting
subspaces will relate quite differently to different outlier
ranking measures

I their measure of interestingness is based on an implicit
notion of density, it may only be appropriate for
density-based outlier scores

I however, this decoupling allows them to discuss the
issue of subspace selection with great diligence as this
is the focus of their study
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Correlation Outlier

I so far, most algorithms for subspace outlier detection
are restricted to axis-parallel subspaces
e.g., due to grid-based approaches or to the required first step of subspace

or projected clustering

I HiCS [Keller et al., 2012] is not restricted in this sense.
I earlier example for outliers in arbitrarily-oriented

subspaces: COP (correlation outlier probability) [Zimek,
2008, ch. 18] (application of the correlation clustering
concepts discussed by Achtert et al. [2006])

I high probability of being a “correlation outlier” if
neighbors show strong linear dependencies among
attributes and the point in question deviates
substantially from the corresponding linear model
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Correlation Outlier

x1

x2

subspace S in which 

o is an outlier

o

7-nearest

neighbors of o

Advertisement
advanced version of this earlier idea at this ICDM
(tomorrow morning): [Kriegel et al., 2012a]
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Comparability of Outlier Scores

I An outlier score provided by some outlier model should
help the user to decide whether an object actually is an
outlier or not.

I For many approaches even in low dimensional data the
outlier score is not readily interpretable.

I The scores provided by different methods differ widely
in their scale, their range, and their meaning.

I For many methods, the scaling of occurring values of
the outlier score even differs within the same method
from data set to data set.

I Even within one data set, the identical outlier score o for
two different database objects can denote actually
substantially different degrees of outlierness, depending
on different local data distributions.
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Solutions in Low-dimensional Data

I LOF [Breunig et al., 2000] intends to level out different
density values in different regions of the data, as it
assesses the local outlier factor

I LoOP [Kriegel et al., 2009b] (a LOF variant) provides a
statistical interpretation of the outlier score by
translating it into a probability estimate (including a
normalization to become independent from the specific
data distribution in a given data set)

I Kriegel et al. [2011] proposed generalized scaling
methods for a range of different outlier models

I allows comparison and combination of different
methods

I or results from different feature subsets
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More Problems in High-dimensional Data

Problems 4 (Bias of Scores) and 5 (Interpretation and
Contrast of Scores)

I most outlier scorings are based on assessment of
distances, usually Lp distances

I can be expected to grow with additional dimensions,
while the relative variance decreases

I a numerically higher outlier score, based on a
subspace of more dimensions, does not necessarily
mean the corresponding object is a stronger outlier
than an object with a numerically lower outlier score,
based on a subspace with less dimensions

I many methods that combine multiple scores into a
single score neglect to normalize the scores before the
combination (e.g. using the methods discussed by
Kriegel et al. [2011])
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Treatment of the Comparability-Problem in
Subspace Methods

I model of Aggarwal and Yu [2001] circumvents the
problem since they restrict the search for outliers to
subspaces of a fixed dimensionality (given by the user
as input parameter)

I OutRank [Müller et al., 2008] weights the outlier scores
by size and dimensionality of the corresponding
reference cluster

I SOD [Kriegel et al., 2009a] uses a normalization over
the dimensionality, but too simplistic
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Treatment of the Comparability-Problem in
Subspace Methods (contd.)

I For OUTRES [Müller et al., 2010, 2011], this problem of
bias is the core motivation:

I uses density estimates that are based on the number of
objects within an ε-range in a given subspace

I uses adaptive neighborhood (ε is increasing with
dimensionality)

I uses adaptive density by scaling the distance values
accordingly

I score is also adapted to locally varying densities as the
score of a point o is based on a comparison of the
density around o vs. the average density among the
neighbors of o
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Treatment of the Comparability-Problem in
Subspace Methods (contd.)

I bias of distance-based outlier scores towards higher
dimensions is also the main motivation for HighDOD
[Nguyen et al., 2011]

I kNN-weight outlier score
I adapt the distances (Lp-norm) to the dimensionality d of

the corresponding subspace by scaling the sum over
attributes with 1/ p√d

I assuming normalized (!) attributes (with a value range
in [0, 1]), this results in restricting each summand to ≤ 1
and the sum therefore to ≤ k, irrespective of the
considered dimensionality

I HiCS [Keller et al., 2012]: LOF scores retrieved in
subspaces of different dimensionality are aggregated
for a single object without normalization
no problem in their experiments since the relevant subspaces vary only

between 2 and 5 dimensions
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Tools and Implementations

Data mining framework
ELKI [Achtert et al., 2012]:
http://elki.dbs.ifi.lmu.de/

E
L
K
I

I Open Source: AGPL 3+
I 20+ standard (low-dim.) outlier detection methods
I 10+ spatial (“geo”) outlier detection methods
I 4 subspace outlier methods: COP [Kriegel et al.,

2012a], SOD [Kriegel et al., 2009a], OUTRES [Müller
et al., 2010], OutRank S1 [Müller et al., 2008]

I meta outlier methods: HiCS [Keller et al., 2012],
Feature Bagging [Lazarevic and Kumar, 2005], more
ensemble methods . . .

I 25+ clustering algorithms (subspace, projected, . . . )
I index structures, evaluation, and visualization
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Tools and Implementations

ALOI [Geusebroek et al., 2005] image data set
RGB histograms, 110,250 objects, 8 dimensions:
Same algorithm, very different performance:
LOF, “Data Mining with R”: 13402.38 sec
LOF, Weka implementation: 2611.60 sec
LOF, ELKI without index: 570.94 sec
LOF, ELKI with STR R*-Tree: 47.24 sec
LOF, ELKI STR R*, multi-core: 26.73 sec

I due to the modular architecture and high code reuse,
optimizations in ELKI work very well

I ongoing efforts for subspace indexing

Requires some API learning, but there is a tutorial on
implementing a new outlier detection algorithm:
http://elki.dbs.ifi.lmu.de/wiki/Tutorial/Outlier
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Visualization – Scatterplots
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Visualized with ELKI.

I Scatterplots can only visualize low-dimensional
projections of high-dimensional dataspaces.

I Nevertheless, visual inspection of several
two-dimensional subspaces (if the data dimensionality
is not too high) can be insightful.
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Visualization – Parallel Coordinates

Visualized with ELKI.

Parallel coordinates can visualize high-dimensional data.
But every axis has only two neighbors – so actually not
much more than scatterplots.
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Visualization – Parallel Coordinates

Visualized with ELKI.

When arranged well, some outliers are well visible – others
remain hidden.
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Data Preparation, Normalization, and Bias

I preselecting attributes helps – but we would like the
algorithms to do this automatically

I distance functions are heavily affected by normalization
I linear normalization ∼= feature weighting
⇒ bad normalization ∼= bad feature weighting

I some algorithms are very sensitive to different
preprocessing procedures

I not often discussed, the choice of a distance function
can also have strong impact [Schubert et al., 2012a,b]

I subspace (or correlation) selection is influenced by the
outliers that are to detect (vicious circle, known as
“swamping” and “masking” in statistics) – requires
“robust” measures of variance etc. (e.g., robust PCA)
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Evaluation Measures

Classic evaluation: Precision@k and ROC AUC

True positive rate of known outliers in the top k.

Example: 7 out of 10 correct = 0.7

Elements past the top k are ignored. ⇒ very crude
k + 1 different values: 0 . . . k out of k correct.

Order within the top k is ignored.
3 false, then 7 correct ≡ 7 correct, then 3 false

Average precision: same, but for k = 1 . . . kmax

94



Outlier
Detection
in High-

Dimensional
Data

A. Zimek,
E. Schubert,
H.-P. Kriegel

Introduction

“Curse of
Dimensionality”

Efficiency and
Effectiveness

Subspace Outlier

Discussion

References

Evaluation Measures

Classic evaluation: Precision@k and ROC AUC
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Y: True positive rate
X: False positive rate

Measure: Area under Curve
Optimal: 1.000
Random: 0.500
Reverse: 0.000

Intuitive interpretation:
given a pair (pos, neg):
what is the chance of it
being correctly ordered?
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Evaluation Measures

Classic evaluation: Precision@k and ROC AUC

The popular measures
I evaluate the order of points only, not the scores.
I need outlier labels . . .
I . . . and assume that all outliers are known!

⇒ future work needed!
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Evaluation: Pitfalls

I common procedure: using labeled data sets for
evaluation of unsupervised methods

I highly imbalanced problem
I “ground truth” may be incomplete
I real world data may include sensible outliers that are

just not yet known or were considered uninteresting
during labeling

I use classification data sets assuming that some rare
(or down-sampled) class contains the outliers?

I but the rare class may be clustered
I true outliers may occur in the frequent classes

I If a method is detecting such outliers, that should
actually be rated as a good performance of the method.

I Instead, in this setup, detecting such outliers is overly
punished due to class imbalance.
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Evaluation of Outlier Scores?

When comparing or combining results (different subspaces,
ensemble), meaningful score values are more informative
than ranks:

I Kriegel et al. [2011], Schubert et al. [2012a] have
initial attempts on evaluating score values

I more weight on known (or estimated) outliers
I allows non-binary ground-truth
I improves outlier detection ensembles by combining

preferably diverse (dissimilar) score vectors
I this direction of research aims in the long run to get

calibrated outlier scores reflecting a notion of probability
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Efficiency

I focus of research so far: identification of meaningful
subspaces for outlier detection

I open problem: efficiency in subspace similarity search
(many methods need to assess neighborhoods in
different subspaces)

I only some preliminary approaches around: [Kriegel
et al., 2006, Müller and Henrich, 2004, Lian and Chen,
2008, Bernecker et al., 2010a,b, 2011]

I HiCS uses 1 dimensional pre-sorted arrays (i.e., a very
simple subspace index)

I can subspace similarity index structures help?
— and can they be improved?

I however, first make the methods work well, then make
them work fast!
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Conclusion

We hope that you learned in this tutorial about
I typical problems associated with high-dimensional data

(“curse of dimensionality”)
I the corresponding challenges and problems for outlier

detection
I approaches to improve efficiency and effectiveness for

outlier detection in high-dimensional data
I specialized methods for subspace outlier detection

I how they treat some of the problems we identified
I how they are possibly tricked by some of these

problems
I tools, caveats, open issues for outlier detection (esp. in

high-dimensional data)
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Conclusion

More details in our survey article:
Zimek, Schubert, and Kriegel [2012]: A survey on
unsupervised outlier detection in high-dimensional
numerical data. Statistical Analysis and Data Mining,
5(5):363–387 (http://dx.doi.org/10.1002/sam.11161)

And we hope that you got inspired to tackle some of these
open issues or known problems (or identify yet more
problems) in your next (ICDM 2013?) paper!
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Thank you
for your attention!
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