

# **Supervised Ensembles of Prediction Methods for Subcellular Localization**

### **APBC 2008**

Johannes Aßfalg, Jing Gong, Hans-Peter Kriegel, Alexey Pryakhin, Tiandi Wei, <u>Arthur Zimek</u>

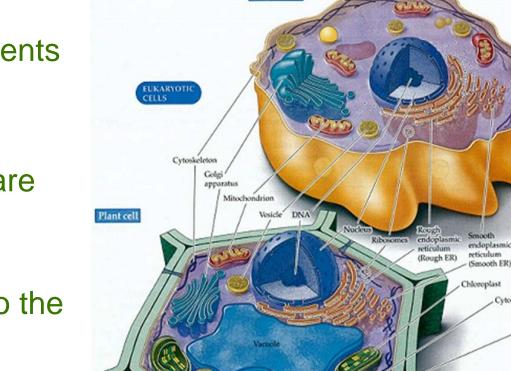
Ludwig-Maximilians-Universität München Munich, Germany http://www.dbs.ifi.lmu.de

 $\{assfalg, gongj, kriegel, pryakhin, tiandi, zimek\} @dbs.ifi. Imu.de$ 








- Background
- Localization Prediction Methods
- Ensemble Methods (Theory)
- Supervised Ensemble Methods
  - Ensemble using a Voting Schema
  - Ensemble based on Decision Tree
- Data and Results
- Conclusions

Cytosc

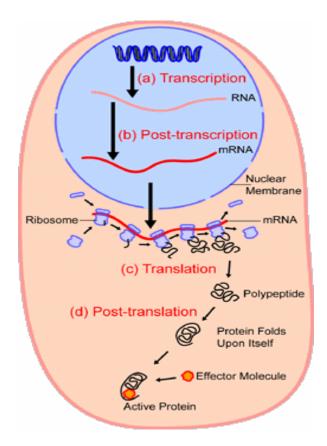
Plasma membran

### cells are organized in regions and compartments

- different regions serve different functionalities
- certain functionalities are performed by specific proteins
- proteins are adapted to the specific biophysical environment of its proper compartment



Animal cell







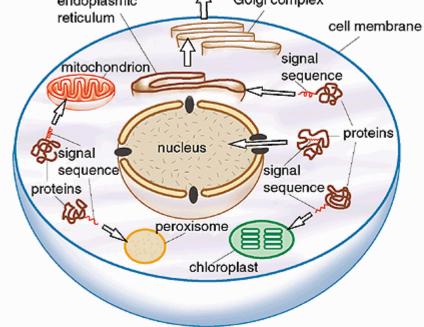

LMU

- proper function of a protein requires correct localization
- co-translational or posttranslational transport of proteins into specific subcellular localizations
- highly regulated and complex cellular process



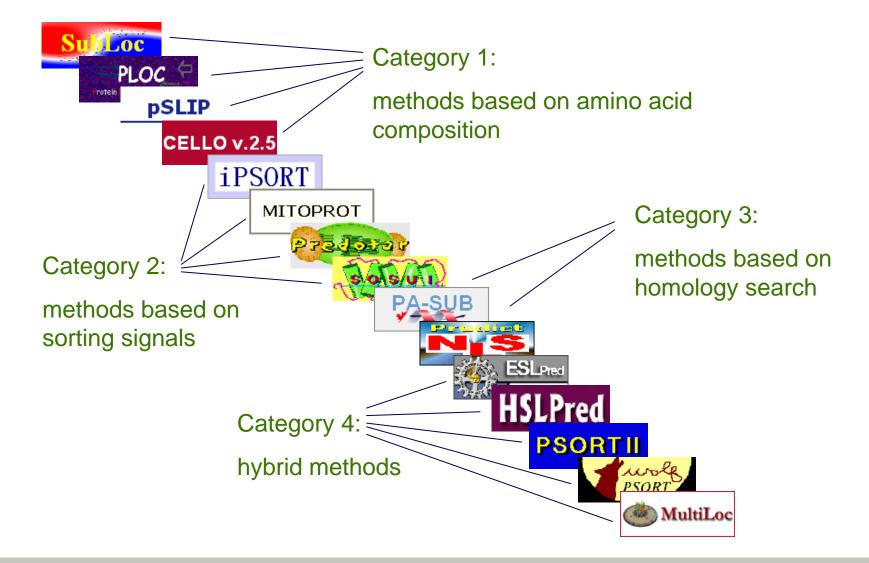
#### **Localization Prediction Methods:** DATABASE **Basis for Predictions** SYSTEMS GROUP




Prediction methods for subcellular localization are based on:

- adaptation of a protein to a certain region is reflected in amino-acid composition (surface exposed to specific milieu)
- transport and localization is guided e.g. by peptide signals
- homology of proteins




Nobel prize 1999 Günter Blobel "proteins have intrinsic signals that govern their transport and localization in the cell"





# Localization Prediction Methods: Using Different Information





#### Localization Prediction Methods: DATABASE SYSTEMS GROUP



- naïve Bayes
- Bayes networks
- k-nearest neighbor methods
- SVM
- neural networks
- rules

## Localization Prediction Methods: DIFFERENT Different Limitations of Methods



- Localization coverage
  - e.g. "SubLoc" predicts 4 localizations
  - "PLOC" predicts 12 localizations
- Taxonomic coverage
  - e.g. "HSLPred" predicts for human proteins
  - "PLOC" predicts for plant, animal and fungi proteins
- Sequence coverage
  - e.g. "ESLPred (2004)" and "SubLoc (2001)" used data set generated by another method "NNPSL" in 1998

# Localization Prediction Methods: DIFFERENT Different Limitations of Methods



- different means to assess the accuracy in publications
- inexact assignment of localizations for methods based on sorting signals
  - secretory pathway → E.R. / Golgi / Lysosome / Extracellular
- strong dependence on the quality of N-terminal sequence assignment for methods based on sorting signals
- strong dependence on the existence of homologous protein for methods based on homology search

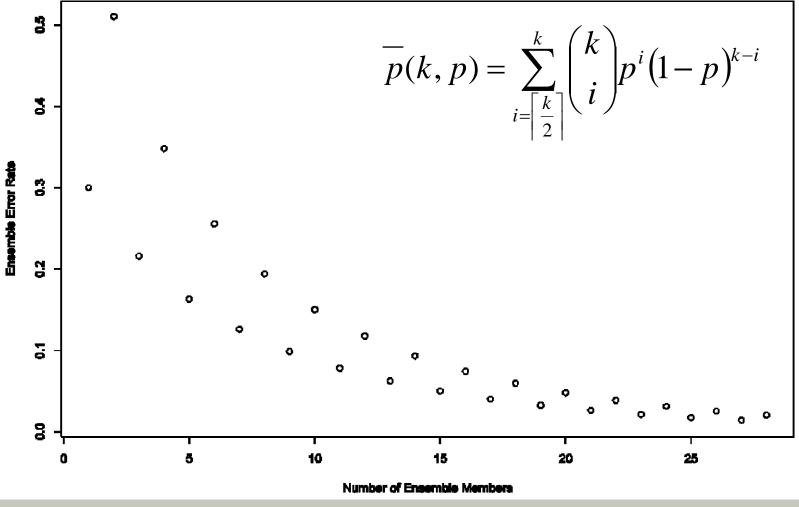




- Ensemble methods combine several self-contained classifiers to gain better accuracy.
- Prerequisites to enhance accuracy by combination of base classifiers:
  - the single base classifier is "accurate" (i.e., better than random)
  - the base classifiers differ:
    - statistical variance (different prediction models perform equally well on training data)
    - computational variance (using different heuristics to overcome computational restrictions)
    - different bias
  - effect: the base classifiers make different (uncorrelated) errors

#### Ensemble Methods: DATABASE SYSTEMS GROUP Ensemble Methods: Theory (unsupervised)




- ensemble of *k* hypotheses for dichotomous problem
- error rate of each hypothesis is p < 0.5
- ensemble is wrong if (and only if) more than  $\left|\frac{k}{2}\right|$  members are wrong
- overall error rate of ensemble: area under binomial distribution, where k (i.e., at least k/2 hypotheses are wrong)

$$k \ge \left\lceil \frac{k}{2} \right\rceil$$





• example: single error rate p = 0.3 equally for each member



#### Ensemble Methods: SYSTEMS GROUP SYSTEMS



- diversity of used information and computational methods makes localization prediction methods ideal base classifiers for ensembles
- prerequisites:
  - comparison of methods with different coverage: derive reliability index
  - assess accuracy of methods by comparable statistics
  - choose representative methods for different categories and algorithmic approaches

#### Ensemble Methods: SYSTEMS GROUP Ensemble Methods: Selection of Base Methods



| Category | Method      | Foundation                     | Algorithm   |
|----------|-------------|--------------------------------|-------------|
| 1        | SubLoc      | aa                             | SVM         |
|          | PLOC        | dipeptide                      | SVM         |
|          | CELLO v.2.5 | n-peptide                      | SVM         |
| 2        | iPSORT      | detecting sorting signals      | AA-index    |
|          | Prederor    | detecting sorting signals      | NN          |
| 3        | PA-SUB      | BLAST against Swiss-Prot       | Naive Bayes |
| 4        | PSORTII     | aa+signal+motif+structure      | k-NN        |
|          | PSORT       | aa+length+signal               | k-NN        |
|          | ( MultiLoc  | aa+signal+motif+structure      | SVM         |
|          | ESLPred     | aa+di+properties+psi-BLAST     | SVM         |
|          | HSLPred     | aa+di+gap+properties+psi-BLAST | SVM         |

# Ensemble Methods: Exclusion of Some Methods



| Category                                                             | Method      | Foundation                     | Algorithm |  |  |
|----------------------------------------------------------------------|-------------|--------------------------------|-----------|--|--|
| too simple foundation, lower rank in preliminary tests               |             |                                |           |  |  |
| 1                                                                    | PLOC PLOC   | dipeptide                      | SVM       |  |  |
|                                                                      | CELLO v.2.5 | n-peptide                      | SVM       |  |  |
| 2                                                                    | iPSORT      | detecting sorting signals      | AA-index  |  |  |
|                                                                      | Predorog    | detecting sorting signals      | NN        |  |  |
| based on virtually all SWISSPROT entries that provide a localization |             |                                |           |  |  |
|                                                                      | k-NN        |                                |           |  |  |
| 4                                                                    | PSORT       | aa+length+signal               | k-NN      |  |  |
|                                                                      | ( MultiLoc  | aa+signal+motif+structure      | SVM       |  |  |
|                                                                      | ESLPred     | aa+di+properties+psi-BLAST     | SVM       |  |  |
|                                                                      | HSLPred     | aa+di+gap+properties+psi-BLAST | SVM       |  |  |

## Ensemble Methods: From Unsupervised to Supervised



- preliminary tests and evaluations: several prediction methods unsuitable for unsupervised ensembles
- problem:

SYSTEMS GROUP

- low accuracy for some localization classes
- some errors may be correlated
- approach: supervised ensembles based on prior knowledge of the performance of the single methods

Method 1:

voting scheme based on prior evaluation of base classifiers

Method 2:

decision tree learns reliability of the single methods for single predictions





• Each method gives its vote to one or several localizations



•Score calculation for each localization according to the gained votes and the weight of each vote

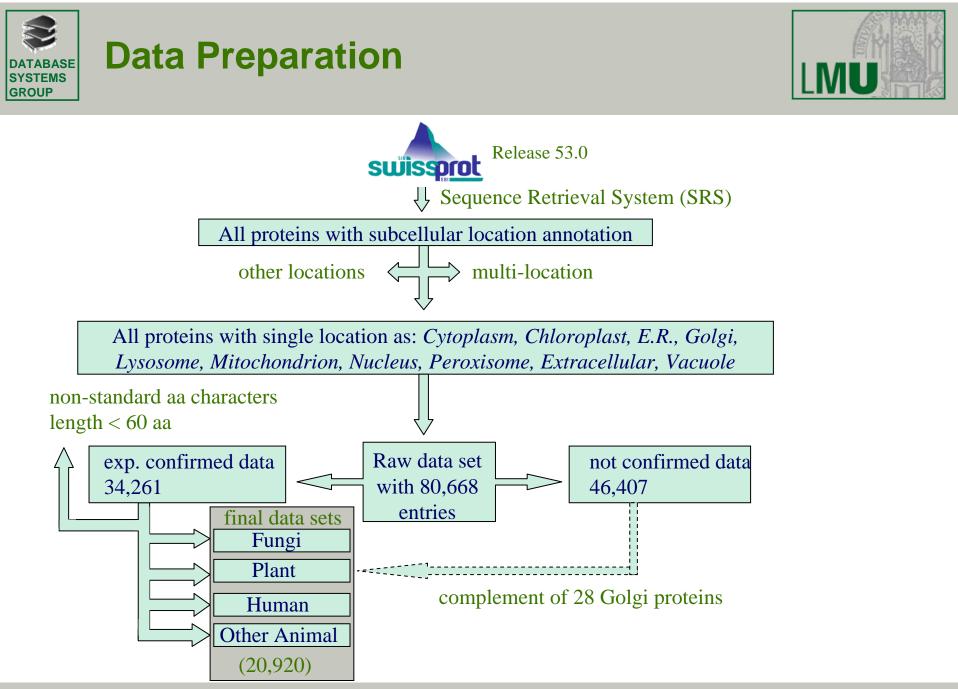
For a certain localization *i*: score<sub>*i*</sub> =  $\sum_{j=1...N}$  (Vote<sub>*j*</sub> \* (*N* - Rank<sub>*j*</sub> + 1))

N : number of methods used by the ensemble method

Rank<sub>*j*</sub> : rank of method *j* during comparison

 $Vote_i = 1$  if method *j* gives the vote to the localization *i*, otherwise  $Vote_i = 0$ .

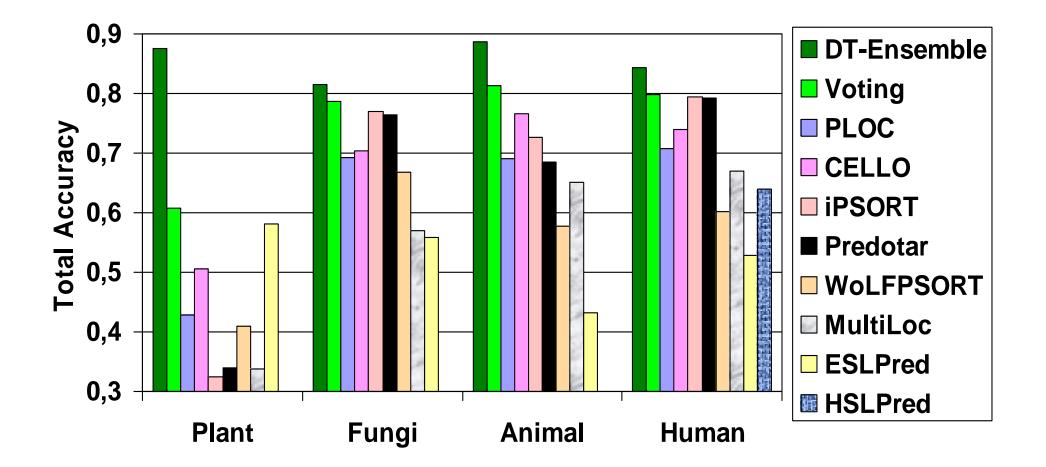
#### Supervised Ensemble Method 2: DATABASE SYSTEMS GROUP




• Decision Trees learn to map prediction vectors of the base classifiers to a single prediction:

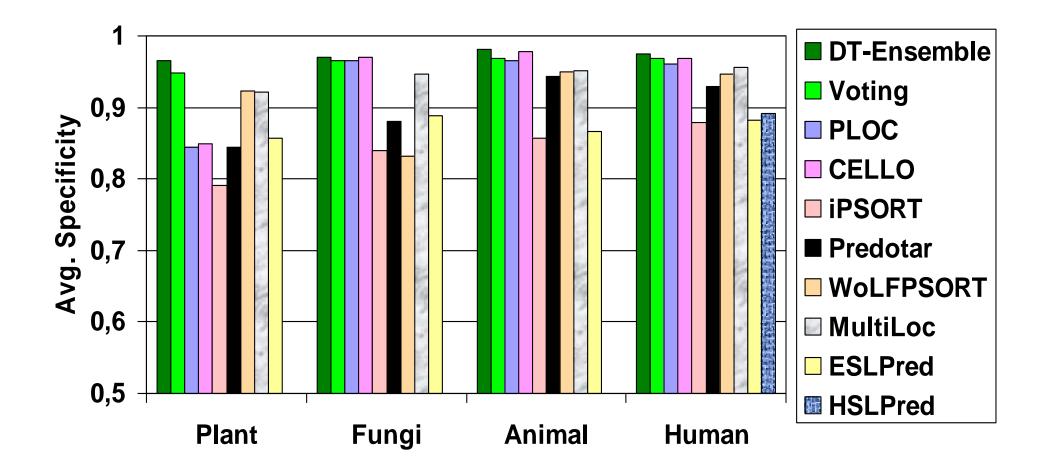
 $(localization index)^N \rightarrow localization index$ 

- Example: decision tree for taxonomic group "plant" learns rules like "If CELLO predicts class 6 and WoLFPSORT predicts class 4, then class 4 is correct."
- The prediction servers and the learned models are available online via


http://www.dbs.ifi.lmu.de/research/locpred/ensemble/



Assfalg et al.: Supervised Ensembles of Prediction Methods for Subcellular Localization (APBC 2008)


















- Localization prediction methods use different kind of information and different computational approaches.
- Combination of several methods to an ensemble yields considerably increased accuracy.
- Methods are seemingly unsuitable for unsupervised ensemble methods.
- Two supervised ensemble methods:
  - voting schema, based on prior knowledge (evaluation of single methods)
  - decision tree (trained to learn ideal combination of single methods for specific localization classes)
- Decision tree models provide further insight in reliability of single methods for specific localization classes.