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Abstract

Two tasks among others are often considered in machine learning research: On the
one hand to reduce polytomous classification problems to dichotomous ones in order
to be able to apply binary classifiers to the multi-class problem. On the other hand
to build ensembles of classifiers that improve upon their respective ensemble mem-
bers. The method of ‘ensembles of nested dichotomies’ (ENDs), recently proposed
by Frank and Kramer [66], copes well with both tasks.

In this thesis we propose to build ensembles of nested dichotomies with respect
to a hierarchy of classes. This idea moreover tackles another general task: in-
corporating domain knowledge in learners. We define a subspace of the space of
possible nested dichotomies with respect to a predefined hierarchy. Ensembles of
hierarchically nested dichotomies (EHNDs) are built by randomly selecting nested
dichotomies from the space restricted in this way.

Given the hierarchy is appropriate to the classification task and reflected in the
feature space, ensembles of hierarchically nested dichotomies are shown to improve
upon ensembles of nested dichotomies. Both methods perform equally well in ap-
plication to protein fold classification (‘fold recognition’). This finding motivates to
question the sufficiency of feature representations of proteins known so far. Nev-
ertheless, in fold recognition datasets EHNDs are found to perform equally well as
the best performing machine learning approaches we are aware of and reach also
the level of accuracy of alignment based methods on difficult data.
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Zusammenfassung

Die Disziplin des Maschinellen Lernens befasst sich unter anderem mit den beiden
Fragestellungen: Reduktion polytomer Klassifikationsprobleme auf dichotome, um
binäre Klassifizierer auf diese Probleme anwenden zu können, und Bildung von
Ensembles von Klassifizierern, die als Ensemble bessere Genauigkeit erreichen als
die einzelnen Klassifizierer. Kürzlich wurde die Methode ‘Ensembles verschachtelter
Dichotomien’ (ENDs) von Frank und Kramer [66] eingeführt, die erfolgreich an beide
Aufgaben zu gleich herangeht.

In dieser Arbeit schlagen wir vor, Ensembles von verschachtelten Dichotomien
unter Berücksichtigung einer Hierarchie von Klassen zu bilden. Diese Idee bezieht
eine weitere Fragestellung des Maschinellen Lernens in die Methode mit ein: die
Berücksichtigung von Hintergrundwissen das Klassifikationsproblem betreffend. Wir
definieren einen Unterraum des Raumes der möglichen verschachtelten Dichotomien,
indem wir diesen Raum mit Rücksicht auf die vorgegebene Hierarchie beschränken.
Ensembles von hierarchisch verschachtelten Dichotomien (EHNDs) werden durch
eine zufällige Auswahl aus diesem beschränkten Raum gebildet.

Unter der Voraussetzung, dass die Hierarchie der Klassifikationsaufgabe an-
gemessen ist und sich auch im Raum der Attribute wiederspiegelt, konnten Ensemb-
les hierarchisch verschachtelter Dichotomien eine höhere Klassifikationsgenauigkeit
erzielen als allgemeine Ensembles verschachtelter Dichotomien. In der Anwendung
auf die Faltungs-Klassifikation von Proteinen (‘fold recognition’) erreichen beide
Methoden, EHNDs und ENDs, das gleiche Niveau an Klassifikations-Genauigkeit.
Dieses Ergebnis regt zu der Frage an, ob sich nicht bessere als die bisher bekann-
ten Attribut-Räume für Proteine finden lassen könnten. Desungeachtet erreichen
EHNDs für fold recognition-Datensätze die gleiche Klassifikationsgenauigkeit wie die
besten der uns bekannten, auf dieses Problem angewandten, Ansätze des Maschi-
nellen Lernens. Auf einem schwierigen Datensatz wird auch die Genauigkeit der
gegenwärtig unseres Wissens besten alignment-basierten Methode erreicht.
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Chapter 1

Introduction

Hierarchies are not only a common mean to organize and to present a large ac-
cumulation of different things like items in a department store or directories on a
computer’s disk, or to preserve order and effectiveness in communities like govern-
ments, companies, or churches. Hierarchies are also naturally occurring whenever
things share a common root, pursuit an at least partially common purpose, or
are set out to common forces or influences, like minerals, geological formations, or
organisms. Considering hierarchies for living creatures to describe their common
properties as well as the differences between them roots back to Aristotle, who
distinguished animals and plants while treating both as living things and divided
animals with respect to certain criteria [12]. His arrangement of the invertebrates
seems to be superior to the classification generated 2000 years later by Linnaeus
[106]. However, the scheme developed by Linnaeus in the 18th century, organizing
living organisms in a tree, is in use until nowadays even though some subtrees were
and are rearranged over and over again. The hierarchy developed by Linnaeus was
starting with three kingdoms as children of the root. Kingdoms were divided into
classes and they, in turn, into orders, families, genera, and species. A few other
ranks have been added, most notably phyla or divisions between kingdoms and
classes, since then. Groups of organisms at any of these ranks are now called taxa,
or phyla, or taxonomic groups.

While this early and classical system of organisms is based on the phenotype of
whole organisms, that is their outer appearance (morphology), the reasons for such
relationships were first revealed by Charles Darwin [42] to be based on inheritance,
diversification, and selection. Ironically, Darwin’s reasoning was strongly based
on the hierarchical classification developed by Linnaeus a hundred years earlier,
while Linnaeus himself understood his own work as revelation of the unchangeable
order within the plan of divine action (‘ad majorem Dei gloriam’) and is cited with
the words: ‘Deus creavit, Linnaeus disposuit ’ [74]. And as a matter of fact, Darwin
found even in the works of Aristotle notes that seemed related to his own reasoning.

Nowadays, biology can not be imagined neglecting the theory of evolution (‘Noth-
ing in Biology Makes Sense Except in the Light of Evolution’, as the famous state-
ment of Dobzhansky says [54]), and modern molecular biology is concerned with
evolutionary relationships, that is hierarchies, of objects on a molecular level, con-
cerning e.g. genes or proteins. This approach revealed several misclassifications by
the classical method, where analogous developments (i.e., similar developments in
response to similar environments, but not based on relationship) may have been
misleading. But on the other hand also a hierarchy of related molecules is unfortu-
nately not always indisputable. And even if it were undisputed, deriving relation-
ships of organisms based on molecular hierarchies would not be straightforward,
since the respective hierarchies might differ for different genes within one organism

1



2 CHAPTER 1. INTRODUCTION

due to different rates of mutation. Thus biological data often could more properly
be organized in general graphs than in trees of relationships [55].

Nevertheless, hierarchical organization of data in biology is ubiquitous. This fact
is inspiring to the attempt of incorporation of knowledge concerning hierarchical
structures of data into the task of building automated classifiers for these data
which is ventured on by machine learning as a special subject of computer science.
Building suitable and prosper learners is a very manifold task. The first part of
this thesis will introduce the problems we are generally dealing with.

At first a machine learning algorithm is designed to create a model that is able
to discern members of a class a from members of a class b. But often there are
more than just two classes. Also in the realm of biology the world is manifold. So
tackling problems that involve many classes (a so called polytomous problem) is an
interesting and well (but obviously not exhaustively) studied problem in machine
learning. We will review the problem and some established solutions to it in the
second chapter.

The third chapter is concerned with the task of building ensembles of learning
machines. Generally, this is a field of its own in machine learning research. But
it is also related to the task described in the second chapter since some ensemble
methods are implicitly or explicitly designed to handle polytomous classification
problems. There is especially one method, called ‘ensembles of nested dichotomies ’
tackling both tasks at once, the reduction of polytomies to dichotomies and building
an ensemble. This method was recently introduced by Frank and Kramer [66]. We
will review this method in chapter 4 since it is also the base for the method devel-
oped in this thesis. Our method provides the possibility to incorporate knowledge
concerning hierarchical structures of classes into the method of ‘ensembles of nested
dichotomies ’. Of course, as stated above, hierarchically structured classification
problems do not only occur in biology but in many fields of possible applications
and were considered for development of other methods before. The respective field
of research is generally concerned with incorporation of domain knowledge into clas-
sification tasks. There are many and diverse ways to do so but so far no general
theory is developed. Chapter 5 presents a very short view on this topic and will
only shortly point out previous attempts to take hierarchical structure into account
for tasks of learning. We are aware of mainly two fields, namely reinforcement
learning and text mining. However, our motivation is mainly rooted in biology.

Based on this background the second part of our thesis will introduce and eval-
uate the method of ‘ensembles of hierarchically nested dichotomies ’. This method
builds ‘ensembles of nested dichotomies ’ where each system of nested dichotomies
is bound to reflect a given hierarchical structure of the classes. In order to pre-
pare a suitable definition of this reflection and to derive the method’s properties
chapter 6 will firstly introduce a theoretical framework to handle hierarchies of
classes, then a method to derive systems of nested dichotomies that actually reflect
a given hierarchy will be introduced. Thirdly the properties of the resulting ensem-
ble method are examined. Some remarks concerning related work will round off the
introduction of the method of ‘ensembles of hierarchically nested dichotomies ’.

Chapter 7 presents an evaluation of our method on synthetical data. This does
not only provide a first impression of its performance. A problem one gets involved
with using real-world data is the uncertainty of the hierarchy – if it is correctly
assigned at all – to be sufficiently reflected in the feature space. Thus having shown
the method to work better than related methods on data exhibiting a pronounced
hierarchy in the feature space used for training and testing (and the synthetical
data is designed to do so, of course) will also allow to evaluate other feature spaces
on data where a hierarchy is claimed to exist, but the accurate exhibition of this
hierarchy within the feature space is not proven.

In part III, chapter 8 we therefore examine the performance of our method
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on protein fold classification, a task that was several times tackled with by machine
learning methods using established feature spaces and also by alignment based
methods, that do not hinge on feature representations of sequences. For protein
fold, several hierarchies are introduced in the literature. However, the reflection
of these hierarchies in even well established feature spaces is neither proven nor
questioned so far. Nevertheless, it seems quite suggesting to take the hierarchy of
protein folds into account for classification tasks, as stated by Reddy and Bourne
[127, p. 243]:

The best way to characterize fold is to look first at the major archi-
tectural features and then identify the more subtle characteristics.

This is a prescription to help the human eye, but the same recipe could also be
helpful to enhance performance of machine learning approaches.

A final chapter 9 in part IV is to summarize our findings and to attempt to give
an outlook on possible biological applications and some suggesting generalizations
of our method.

An appended CD finally provides the data used for evaluation and the imple-
mentations we prepared for this thesis.
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Chapter 2

Approaches to Polytomous

Classification

In machine learning one large set of methods is referred to as supervised learning.
Algorithms of that kind are trained on instances where the correct output is known:
An instance i is represented by d features often thought of as a feature vector
~xi ∈ R

d. Machine learning is based on the assumption that a function f : R
d → C

exists that assigns a class cj ∈ C to any instance ~x ∈ R
d. A supervised learner is

supposed to estimate an approximation h (also referred to as model or classifier)
to this function f , based on a set of k training instances (~xi, cj), i ∈ {1, . . . , k}, j ∈
{1, . . . , n}, where the correct output cj of the target function f is known for a
feature vector ~xi.

If the target function f provides a classification, the space of possible outputs C
will usually be restricted to a small range of discrete or categorical values, referred
to as classes. Otherwise the predicted outputs will be quantitative and the predic-
tion task is called regression. However, quantitative outputs of regression could be
mapped to class-labels as well. Clearly, the task of classification is simpler for two
possible classes than it is for more than two classes, as will be explained below.

The aim of the current chapter is to outline briefly the increasing difficulties of
the classification task with an increasing number of classes and basic approaches
for tackling these difficulties. For this outline and for a general view we refer to
standard textbooks [80], [82], [110], and [151].

2.1 Polytomous versus Dichotomous Classification

Approaching classification problems by means of machine learning generally be-
comes more difficult with a raising number n of classes for several reasons:

• Firstly, the number of training instances is usually limited and thus becomes
on average smaller for a single class.

• Secondly, if each class is to be distinguished from each other class, there will

be (explicitly or implicitly) n×(n−1)
2 decision boundaries to be defined, that is,

the number of required decision boundaries raises with the squared number
of classes.

Decision trees – as an example of classifiers directly applicable to multi-class-
problems – involve the expected reduction in entropy H of the set of training
examples, corresponding to the homogeneity of examples as a possible decision
criterion which attribute to select as the most promising for a decision on

7



8 CHAPTER 2. APPROACHES TO POLYTOMOUS CLASSIFICATION

the respective next level. Clearly, to gain homogeneity of examples will be
the more difficult the more classes the examples are distributed on. This
corresponds to the entropy H raising with the number n of classes. The
entropy H is maximal for a given n when all class-probabilities are equal, i.e.,
1
n , and equals log n [138]. This slow (only logarithmic) increase is due to the
fact that a decision tree is not bound to discern each class from each other
class. Instead it can group classes together and discern the group from other
groups of classes. We will keep this efficient method in mind and encounter it
again. For now, our point is simply the increase of complexity, which is not
avoidable, regardless how slow it is.

• Thirdly, a feature space of higher dimensionality could eventually allow sepa-
ration of more classes more easily than a feature space of lower dimensionality
does. Thus one would prefer high dimensional feature spaces for multi-class
problems. On the other hand high dimensional feature spaces are a problem
of their own kind, since they usually increase the complexity of the learning
task. In addition they increase the probability of irrelevant attributes or noisy
data to guide the classifier in wrong directions. And last but not least, a high
dimensional feature space will lead to an overfitted classifier more likely than a
low dimensional one does. The couple of problems related to high dimensional
spaces of data are well known as ‘curse of dimensionality ’ [18].

Thus, approaching polytomous classification problems requires even more efforts
in comparison to dichotomous ones. There are algorithms which are capable to
learn multi-class-problems like decision-trees, some rule-learners, and in general
instance-based learners, although many rule learning algorithms ought to learn a
concept description based on positive and negative examples. Other algorithms are
principally designed to distinguish two classes only, usually based on (mostly linear)
discrimination or regression. Among them are so well-performing ones as support
vector machines (SVM) [23], or the less recent perceptron [130] – not to forget
the earliest formal approach to classification, Fisher’s linear discriminant analysis
method (LDA) [63]. In most cases also algorithms capable of handling multi-class
problems will perform better over two than over many classes, due to the reasons
mentioned above, even if they are able to treat polytomous problems. Furthermore,
since especially the support vector machines are currently considered to belong to
the best-performing classifiers and are therefore used preferably, the possibilities to
applicate support vector machines to polytomous problems are an interesting topic
of research. We will, however, address this problem not specifically for support
vector machines only, but in the more general horizon of how to applicate two-
class-classifiers to polytomous classification problems.

2.2 Approaches to the Reduction of Polytomies to

Dichotomies

The world is not black and white – many real-world classification problems include
more than two classes. In order to apply binary classifiers to multi-class-problems
the latter are to be reduced to several dichotomous problems. For such a reduction
there are basically three different ways one can think of, as long as one wishes to
keep the number of involved classifiers limited1:

• learning for each class the discrimination between this class and all other
classes (one-versus-others),

1For approaches involving more than a minimal number of classifiers, see chapter 3 concerning
ensemble-methods.
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• learning for each class the discriminations between this class and each other
class (all-versus-all), or

• splitting the set of classes into two subsets, assigning each subset a class label
c ∈ {1,−1} as superclass, and learning the discrimination between this two
superclasses, then repeating the process recursively for each of the subsets
(nested dichotomies).

The first method results in n classifiers for n classes, the second results in
(

n
2

)

=
n×(n−1)

2 , and the third results in n − 1 classifiers. Thus, the first and the third
method seem preferable with respect to complexity at first glance, but the polyto-
mous problem is not solved by simply reducing it to several dichotomous problems.
The resulting classifiers will have to be combined in a proper way which is not al-
ways trivial. Also each method has advantages as well as disadvantages which we
will now review shortly, partially based on [84].

2.2.1 One versus Others

The first of these methods, constructing one classifier for each class to learn discrim-
ination between this class and all other classes, is the most simple one and also often
referred to as the standard-method. This method is not claimed to be suggested
by anyone in the first place. It is also called ‘one-versus-rest’, ‘one-versus-all’ (one
reads also ‘against’ instead of ‘versus’ ), or ‘one-per-class’.

Consider for example the linear separation of two classes which can be generally
formalized (see [39, p. 20]) by associating a weight vector w and a bias b to each
class and assigning an example x to class 1, if

〈w1 · x〉 + b1 ≥ 〈w−1 · x〉 + b−1 (2.1)

is fulfilled, to class −1 otherwise. Thus, the one-versus-others-solution of the n-
class-problem with classes i ∈ N = {1, . . . , n} is equivalent to assigning x to the
class, where the maximum is reached for the respective weight vector and bias in

c(x) = arg max
i∈N

(〈wi · x〉 + bi), (2.2)

where a classifier for class i (thus providing weight vector wi and bias bi) is to be
considered as trained with all of the examples of the ith class with positive labels,
and all other examples with negative labels.

Although one-versus-others is a very simple and also efficient method of reducing
polytomies to dichotomies at first sight (the number of required classifiers being
equal to the number of classes, that is of linear complexity, and thus any simple
voting-scheme (e.g. Equation 2.2) for testing (or classifying, respectively) also being
linear), it hides several pitfalls, partially depending on the structure of data.

Firstly, one has generally to assume that the classes are mutually exclusive. If
they were not, one would have to build n unlinked classifiers, each deciding whether
or not an instance belongs to the respective class. These n decomposed dichotomous
problems would then be interesting, but not a decision over a recombination of
all n classifiers. The problem will become more complicated, if the classes are
somehow dependent, but this is far beyond the scope of our investigation. Thus, we
will generally assume classes of a polytomous classification-problem to be mutually
exclusive.

Secondly, one should assume classes to be unrelated. If several classes were
related to each other, meaning they were more similar to one another than to other
classes given in the namely dataset, the one-versus-others approach could easily
become inappropriate.



10 CHAPTER 2. APPROACHES TO POLYTOMOUS CLASSIFICATION

(a) multi-class learning (b) one-versus-others (c) all-versus-all

Figure 2.1: Exemplary decision boundaries for a polytomous classification problem.

(a) One classifier separates all classes.

(b) n classifiers, each separating one class from all others, here: + against all other classes.

(c)
n×(n−1)

2
classifiers, each separating two classes, here: + against ∼.

In this example all dichotomous classification problems of the all-versus-all approach could be
solved with a simple linear discriminant, while neither the multi-class approach nor the one-

versus-others approach have a linear solution.
Figures taken from [69].

But even assuming independence and unrelatedness of classes, the respective
‘others’-class could become very inhomogeneous. Thus, the separation would be-
come very difficult, leading to increased complexity of the respective base classifiers.
As a matter of fact, Hsu and Lin report an increased number of support vectors for
most of the considered problems for the one-versus-others approach in comparison
to all-versus-all leading also to an increased testing time [84]. See also Figure 2.1
for an illustration.

Furthermore, the resulting dichotomies will usually be very unbalanced in terms
of size, since the others-class will contain (n−1) as much instances as the respective
single class on average. Thus, most learners might be biased to the others-class.

However, Rifkin [128] (repeated in [129]) claimed the one-versus-others-method
to be not inferior to some other methods of combining dichotomous classifiers or
generalization of certain binary classifiers for polytomous problems (given the base-
classifiers being well-tuned regularized). This claim was primarily based on several
experimental results using support vector machines and regularized least-squares
classification as base classifier. Therefore, although it is supported by some evidence,
it remains unclear, whether it holds in general. Furthermore, other types of base-
classifiers (even worse-performing ones) might be interesting for the exploration
of real-world data, since they could provide information regarding classification-
criteria in a more human-readable form, e.g. as rules.

2.2.2 All versus All

The all-versus-all -method (also referred to as one-versus-one, round robin, pairwise,
or all-pairs) builds one classifier for each pair of classes. Thus, a single classifier is
trained with examples belonging to either one of the respective two classes (examples
belonging to other classes being ignored) and it should also classify any instance
during testing to either one of the classes it learned about.

Although there are O(n2) classifiers needed for an all-versus-all -approach, the
performance is not necessarily inferior to an one-versus-others-approach, since the
time-complexity for training is often super-linear dependent on the number of in-
stances. Thus, each of the n one-versus-others-classifiers could require considerably

more training time as one of the n×(n−1)
2 all-versus-all -classifiers. Assuming m
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instances for each of n classes, one-versus-others training-complexity would be

Ttraining(n, m) = n × t(nm) (2.3)

(i.e., involving n × m instances for training each of n classifiers, t : N → R
+
0 being

the time-complexity of training one single classifier dependent on the number of
instances).

All-versus-all on the other hand has a time-complexity of

Ttraining(n, m) =
n × (n − 1)

2
× t(2m). (2.4)

If, however, t was linear, both approaches would be in O(n2m), all-versus-all actu-
ally saving m instances overall in comparison to one-versus-others. With increasing
complexity of t the advantage for all-versus-all becomes more distinct. (Fürnkranz
[69] provides a more detailed discussion regarding the time required for training
one-versus-others and all-versus-all, respectively.) Related to the decreased com-
plexity of training for all-versus-all classifiers may be the fact that two single classes
might be easier separable than one class is from all other classes, as it was stated
above and illustrated by Figure 2.1.)

Rifkin’s claim mentioned above was partially motivated by the efficiency of one-
versus-others decomposition-methods. Whilst his claim may be true, its motivation
seems not totally convincing in general, even though he was aware of the better
training-efficiency of the all-versus-all -method [128, p. 179]. But it is noteworthy
that, on the other hand, space-complexity could become a considerable problem
(depending on the chosen base-classifier) in case of all-versus-all for many classes
(as Rifkin also has noted at the same place) due to the squared number of required
classifiers. Furthermore, the time-complexity of testing (which is often of greater
importance to a user, as Rifkin also points out [129]) is generally advantageous for
one-versus-others, although there are several testing procedures, that is different
ways of combining the built and trained base classifiers, established for all-versus-
all, which we will shortly recall.

2.2.2.1 Conjunction of Predictions

Knerr et al. [91] proposed a method for building and training a neural network de-
signed to perform polytomous classification tasks where some classes are not linearly
separable. This is sometimes referenced to as first method of a connection of all-
versus-all -classifiers. However, the method is closely connected to the background
of neural networks and, as a matter of fact, primarily tends to use one-versus-others.
Nevertheless, for classes that are not linearly separable by one-versus-others, an all-
versus-all classification is performed. Thus for an n-class problem where m classes
are linearly separable via one-versus-others, all-versus-all is performed for n−m = o
classes. This procedure leads to o − 1 neurons for each of o classes discerning the
respective class against the o − 1 other classes. The output of these neurons is
directed to a layer of o AND-neurons (one for each of the remaining o classes).
This is the output-layer for the all-versus-all related part of the network. Each of
the output-neurons gets therefore possibly input of o− 1 pairwise-classifier-neurons
(and, perhaps, from the m one-versus-others-neurons voting for ‘others’). Since the
output-neurons are AND-functions, the output for class i will be given, if all o − 1
pairwise classifiers discerning class i from some other class classify a given instance
to class i (and m one-versus-others-neurons vote for ‘others’).

Of course the method of Knerr et al. is easily generalizable to any base classifier.
The essence of the method is to vote finally for class i, if and only if all pairwise
base-classifiers built by the all-versus-all -method for class i versus some other class
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vote for class i. This is a very strict decision rule possibly allowing only very few
wrong classifications. But on the other hand many instances will possibly not be
classified at all (or labeled as unknown, respectively).

2.2.2.2 Voting

Apparently not being aware of the method proposed by Knerr et al. [91] Fried-
man proposed another approach to polytomous classification [68] which neverthe-
less overcomes the possible problems the earlier method was resulting in due to its
strictness. Friedman does not demand a concordantly voting of all base classifiers
related to a certain class, but simply counts the votes of the single classifiers and
votes for the relative winner. Thus Friedman’s method is also referred to as ‘max
wins ’-strategy.

Obviously max wins would classify some instances labeled as unknown by the
method of Knerr et al. – not necessarily all of them, since the count of the votes
could also result in a tie (which is not discussed by Friedman). This generosity
could increase the true positive rate (TP/(TP + FN)). But on the other hand also
the false positive rate (FP/(FP +TN)) could be increased, of course. However, the
latter seems more unlikely and would rather be a problem of not well-tuned base
classifiers than of Friedman’s method.

2.2.2.3 Pairwise Coupling

Moreover, max wins was refined by Hastie and Tibshirani [81], resulting in the rather
frequently used so called method of ‘pairwise coupling ’. This method is based on
estimated class probabilities. Some classifiers might provide class probabilities. For
k-nearest-neighbors as well as for support vector machines Hastie and Tibshirani
propose also approaches for deriving probabilities based on the classification. For
coupling of probability estimates an iterative procedure is presented. Recently Wu
et al. [153] extended this method.

The pairwise coupling method breaks the ties Friedman’s method is possibly
resulting in. But the error-rate is not always decreased in comparison to max
wins. Furthermore, the time-complexity of the testing-procedure is increased by the
procedure for coupling the probabilities which is to be performed for each instance
separately.

2.2.2.4 Decision Directed Acyclic Graph

Platt et al. [124] proposed another testing procedure based on
(

n
2

)

classifiers. Their

method’s aim is to increase speed during testing, since not all of the
(

n
2

)

classifiers
are to be considered. When the one classifier (trained e.g. for classes a versus
b) on top classifies for a they conclude the instance would not belong to class b.
According to this conclusion, only classifiers unrelated to class b are to be consulted
in the remainder of the testing procedure. To obtain a decision the respective
classifiers are therefore connected in a directed acyclic graph. Hence the method is
referred to as decision directed acyclic graph, or DDAG for short (see Figure 2.2 for
an illustration).

The idea is striking, since it overcomes also some open questions related to the
max wins as well as to the pairwise coupling strategy: Could the instances of a
single class tending to be closer on average in feature space to a randomly chosen
instance than instances of the other classes receive more votes of classifiers unrelated
to the actual class? This seems a relevant problem (discussed also in [81]) which is
avoided by the negative decision.
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(a) (b)

Figure 2.2: Illustration of a decision directed acyclic graph.

(a) The decision DAG for finding the best class out of four classes.

(b) The decision boundary related to a 1-versus-4 SVM. In max wins instances of classes 2 and
3, respectively, would have been voted for class 4. For DDAG the only conclusion for them
would be not to belong to class 1.

Figures taken from [124].

One the other hand, if the one classifier on top would classify wrongly (meaning
it would not recognize a given instance of class b to belong to class b, which would
be rather unexpected, of course), for the remaining classifiers involved with class
b during training would have arisen no opportunity of correcting the one wrong
classifier.

The time-complexity for testing in a DDAG is linear, since only n − 1 decision
nodes will be evaluated in order to derive an answer for a problem with n classes.

2.2.2.5 Summary

While max wins and pairwise coupling are frequently used methods (despite their
weaknesses), with DDAG an elegant and efficient method of all-versus-all classifi-
cation was proposed. However, there are still

(

n
2

)

classifiers to be built and trained.
Furthermore, for classification accuracy of DDAG no superiority in comparison to
max wins or one-versus-others is claimed [124]. Thus, a look at the third method
of decomposition of polytomies may be interesting, although this last method is less
frequently used.

2.2.3 Nested Dichotomies

Fürnkranz defines a decomposition of an n-class polytomy into n − 1 dichotomies
called ‘ordered class binarization’, where the ith classifier is trained with examples
of class i as positive examples and the examples of classes j > i as negative ex-
amples [69, Def. 3]. This technique could more generally be referred to as nested
dichotomies [65]: The classes are splitted into two subsets, and each subset is recur-
sively splitted further. Obviously the method described by Fürnkranz is a special
case of nested dichotomies, the first of two subsets always containing exactly one
class.

In terms of the number of required classifiers (n−1) nested dichotomies improve
over the other two methods. The complexity of a single classifier depends: There
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might be as well classifiers discriminating several classes versus several others as
classifiers discriminating one class versus one or several others. In case of ‘ordered
class binarization’ there are only one-versus-others-classifiers, where the size of the
set of ‘others’ is continuously decreasing one by one. This special case is especially
recommendable in case of ordered classes (as the method’s name is already indi-
cating), that is, the latter classes are including the earlier ones. Fox [65] gives as
an example the level of education of adults, where a higher level of education also
includes a former one. Generally, this is the case for classes resembling some sort
of progress through the stages of a process.

When the classes are not ordered nested dichotomies are not generally recom-
mendable since there are many different nested dichotomies for a single polytomous
problem, each of them imposing a certain ordering. Thus, for unordered classes one
could not possibly select a proper nesting of dichotomies.

However, in contrast to the other two decomposition-methods, note that nested
dichotomies could be expected to improve in case of structured data if one is able
to use the information of the structure for selecting the proper dichotomies.

2.3 Conclusion

We reviewed several approaches to decomposition of multi-class problems to sev-
eral dichotomous problems of classification. The approaches presented so far were
approaches that tend to use only a somehow minimal number of base classifiers, nev-
ertheless exhaustively considering each class at least once. In the following chapter
we will also take approaches into account that are not restricted in this way. How-
ever, for all of these approaches some properties can be formalized. To address
the questions arising from the decomposition of polytomous classification problems
more formally further on, we will firstly define some basic terms (according to [69]):

Definition 2.1 (Binarization)
A binarization is a mapping of a multi-class learning problem to several two-class
learning problems, that allows a prediction for the multi-class problem based on the
predictions for all the two-class problems involved.

As binarization procedures we discussed one-versus-others, all-versus-all, and
nested dichotomies. The idea behind all binarizations is not to burden a single
classifier with the task of discriminating several classes, but to hand down this task
to the combination of several classifiers.

Definition 2.2 (Decoding)
Decoding is the derivation of a prediction for a multi-class problem from the pre-
dictions of the set of two-class classifiers built for a binarization of the multi-class
problem.

Decoding of one-versus-others and nested dichotomies, respectively, is straight-
forward. Several decoding procedures are established for all-versus-all.

Definition 2.3 (Base Learner)
The learner originally providing predictions that a decoding could be based on is
referred to as base learner.

For a given problem, some binarizations as well as certain base learners will
be more appropriate than others, depending on the time- and space-complexity for
training and testing, respectively, one is willing to accept, and finally also depending
on the structure of the given data. If data are structured in a very pronounced
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manner and some classes are more closely related to each other than to other classes,
certain simple strategies of binarization will become easily inappropriate or at least
they might become more complicated.

On the other hand, data exhibiting pronounced hierarchical structure of classes
are not always a curse. On the contrary, if one knows about the structure, one
might be able to use this knowledge to improve effectiveness of classification. While
all binarization-techniques presented so far possibly could be adapted to hierarchi-
cally structured classes, we choose nested dichotomies for further examination of
adaptation to hierarchically structured classes, since for them this adaptation is
most natural. Furthermore, nested dichotomies are more appropriate for hierarchi-
cally structured classes as a matter of principle, compared to one-versus-others and
all-versus-all, respectively.

Later on we will particularly examine an adaptation of the nested dichotomies-
binarization to hierarchically structured classes based on ensembles of nested di-
chotomies (ENDs). Therefore, we will shortly consider ensemble-techniques in ma-
chine learning in the following chapter before we recall ENDs afterwards.
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Chapter 3

Approaches to Classification

by Ensembles of Learners

One could describe the task of a single machine learning algorithm to search for the
best hypothesis to explain the training data. Ensembles of learning machines thus
are constructing a set of hypotheses based on training instances and then have these
hypotheses vote for classification of unknown instances. Ensembles of hypotheses
are often found to be more accurate than any single one of their hypotheses. Build-
ing ensembles of learners might especially be a good idea if the single learner is
necessarily biased but not necessarily towards the correct solution. In this case
ensembles could balance the differently biased single members to a relatively un-
biased overall learner, as we will see. Recall e.g. the method of binarization by
nested dichotomies, stated in the previous chapter 2, section 2.2.3. While any sin-
gle binarization by nested dichotomies imposes a certain order on the classes of the
polytomy, this bias could be compensated by several other binarizations using other
nested dichotomies and therefore each assuming a different order of classes.

As a foundation for the following chapter 4, where especially ensembles of nested
dichotomies will be represented, we will shortly and more or less abstractly survey
ensemble-based approaches to machine learning. Unless other sources are cited we
refer to the reviews [46], [49], and [146].

3.1 Ensembles in General

Recall that a classifier is to assign a class-label c to a vector of features ~xi, as-
suming some underlying ‘true’ function f such that f(~xi) = cj for each training
instance (~xi, cj). The goal of any learning algorithm therefore is to find a good
approximation h to f . The learned function h is referred to as classifier. It could
also be understood as a hypothesis regarding the dependency of class cj of the fea-
tures ~xi. For any learning algorithm there is a certain space of hypotheses H the
algorithm could represent, whereas many hypotheses may not be representable by
a certain algorithm and thus they never could be used as an approximation to f .
This restriction of any learning algorithm is also called its bias. Of course, any
learning algorithm is to be biased to a certain degree in this notion since a totally
unrestricted space of hypotheses is most likely to be infinite. Thus the search for
the best hypothesis could be a never-ending quest. And even an infinite hypothesis
space is still likely to be biased. An unrestricted space of hypotheses would also
provide at least one hypothesis approximating f perfectly for the training data (by
learning the classes by heart), but only poorly for any new data, and thus causing
the learning algorithm to overfit.

17
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However, the best hypothesis h for a given learning problem available in a re-
stricted space of hypotheses may or may not be a good approximation to the ‘true’
function f . Thus, ensemble learning algorithms approach the solution of the classi-
fication problem in a different way, constructing a set (also committee or ensemble)
of hypotheses and having those hypotheses ‘vote’ to classify a given instance ~x. Dif-
ferent ensemble methods may differ as well with respect to the method of construct-
ing the set as with respect to the procedure of voting. Given a set of hypotheses
{h1, . . . , hn} for a dichotomous classification problem for the classes {+1,−1}, i.e.,
hi : R

d → {−1, 1}, voting could be generally performed by choosing a set of weights
{w1, . . . , wn} and constructing the overall classifier

h̄(~x) = σ

(

n
∑

i=1

wihi(~x)

)

, (3.1)

where σ : R → {−1, 1} is the tie-breaking signum function (Definition 3.1).

Definition 3.1 (Tie-Breaking Signum Function)
The tie-breaking signum function σ : R → {−1, 1} is given by:

x 7→

{

1 if x ≥ 0
−1 if x < 0

Methods of voting for polytomous problems could resemble e.g. the methods
described in the previous chapter 2, sections 2.2.2.1 through 2.2.2.4, and also in
Equation 2.2. Many ensemble methods – as well as these standard binarization
techniques – are constructing the ensemble members independently. Thus the voting
is commonly unweighted, i.e.,∀i ∈ {1, . . . , n} : wi = 1 in Equation 3.1 above.
Otherwise one would have to apply a rule to define the weights of hypotheses. Also
a second level classifier could be trained to learn an appropriate rule for weighting
the hypotheses. Since these approaches are out of the scope of this investigation,
we will focus on unweighted combination of hypotheses.

By combining several hypotheses, ensemble methods can partly overcome some
general problems of those algorithms which are learning only one single hypothesis:

• If the space of hypotheses is too large with respect to the amount of available
training instances there might be several different hypotheses giving equal
accuracy on the training data. Choosing one of them exposes the learning
algorithm to the risk of not performing well over future data. Voting of all
these equally good classifiers can possibly reduce this risk. This problem is
also known as the statistical variance of a learning algorithm.

• Another kind of variance arises when the learning algorithm is not guaran-
teed to find the best hypothesis within the hypothesis space, e.g. since this
task is computationally intractable (thus this kind of variance is also referred
to as computational variance). Heuristics to overcome the computational re-
strictions can get stuck in local optima and hence fail to find the optimal
hypothesis. Obviously, trying several times reduces the risk of choosing the
wrong local optimum.

• Finally, as we have indicated above, a learning algorithm might suffer from
a too strong restriction of the hypothesis space, i.e., the hypothesis space
H does not contain any good approximation to the ‘true’ function f . Thus
the learning algorithm has a high bias. A weighted sum of hypotheses could
expand the space of representable functions in some cases, so an ensemble
might be able to find a better approximation of f than any of its components
could ever do.
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These improvements of ensembles over single classifiers are stated conditionally
since there are mainly two conditions for an ensemble to improve over its individual
members: The individual classifiers must be accurate and diverse:

Definition 3.2 (Accuracy of Classifiers)
A classifier will be accurate, if its error rate is better than random guessing on
new instances.

Definition 3.3 (Diversity of Classifiers)
Two classifiers will be diverse w.r.t. each other, if they make different errors on
new instances.

It is easy to understand why these two conditions are necessary and also suffi-
cient. If several individual classifiers are not diverse, then all of them will be wrong
whenever one of them is wrong. Thus nothing is gained by voting over wrong
predictions. On the other hand, if the errors made by the classifiers were uncorre-
lated, more individual classifiers may be correct while some individual classifiers are
wrong. Therefore, a majority vote by an ensemble of these classifiers may be also
correct. More formally, suppose an ensemble consisting of k hypotheses, and the
error rate of each hypothesis is equal to a certain p < 0.5 (assuming a dichotomous
problem), though independently. The ensemble will be wrong, if more than k/2 of
the ensemble members are wrong. Thus the overall error rate p̄ of the ensemble is
given by the area under the binomial distribution, where k ≥ dk/2e, that is for at
least dk/2e hypotheses being wrong:

p̄ (k, p) =

k
∑

i=dk/2e

(

k

i

)

pi(1 − p)k−i. (3.2)

The overall error-rate is rapidly decreasing for an increasing number of ensemble
members, as illustrated by Figure 3.1. However, the error-rate remains higher for
even numbers than for the respective previous odd number, since ties are counted
as errors. Thus an ensemble having 2k members will decide wrongly, if k members
decide wrongly. So will an ensemble having 2k − 1 members, but for this one k is a
greater fraction of the overall number of classifiers.

3.2 Methods for Constructing Ensembles

In order to construct an ensemble one could take several approaches. Any approach
is to use accurate and diverse classifiers as members and to combine them tack-
ling the general problems of statistical and computational variance as well as the
representational bias. Generally one may recall several possibilities:

3.2.1 Bayesian Voting

The Bayes Optimal Classification is the most accurate available classifier under
certain circumstances. It will choose the prediction of a class c, if this choice is
maximizing the weighted sum of all hypotheses hi ∈ H, given the data D:

P (c|D) =
∑

hi∈H

P (c|hi)P (hi|D). (3.3)

Since it depends on a complete enumeration of all possible hypotheses it is usually
not applicable to problems where the space of hypotheses is not too small. Fur-
thermore, it depends on reasonable prior probabilities of the hypotheses which are
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Figure 3.1: Ensemble-error-rate over number of ensemble-members.
Decreasing of ensemble-error-rate with increasing number of ensemble members according to Equa-
tion 3.2. For each ensemble-member an error of p = 0.3 is assumed. Obviously, for an even number
of members the error-rate remains always higher than for the closest odd numbers, since ties are
counted as errors.

often assumed in a simplified manner. Thus the ‘Bayes Optimal Classifier’ is often
just not feasible in actual applications. (Besides the sources given above we refer
also to [110, chapter 6] for Bayesian Learning.)

3.2.2 Resampling

Some learning algorithms are unstable, meaning the learned hypothesis undergoes
major changes in response to even small changes in the training data. To build
ensembles of diverse hypotheses a common method is to resample the training data
several times and train an unstable algorithm for each sample. Best-known methods
of this category are bagging [27], cross-validated committees [120], and boosting-
methods (see also [82, chapter 10]). While bagging forms an ensemble by learn-
ing over bootstrap replicates of the training data (sampling with replacement) and
cross-validated committees use subsets of data created by sampling without replace-
ment, in boosting-methods the training instances get a different weighting at each
iteration.

3.2.3 Feature Selection

In case of features of high dimensionality an ensemble approach could choose several
subsets of features, simultaneously fighting the curse of dimensionality. Apparently
these methods work well especially when the features are highly redundant.

3.2.4 Manipulating Output Targets

This general method provides also (like the two previous approaches) different data-
sets for training single classifiers. But instead of resampling or choosing subspaces,
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now the class-labels are changed, i.e., the multi-class-problem is decomposed to
several two-class-problems.

The concept of ‘decomposition’ has already been introduced in chapter 2. It
could also be thought of as an ensemble method: Single classifiers are trained
each for one of several dichotomies provided by a binarization of a polytomous
classification-problem. The ensemble tackling the polytomous problem consists of
all these single classifiers. For an ensemble method one could think of using more
dichotomies as in the methods described above (chapter 2), or even less. This most
naturally leads to the method of Error Correcting Output Coding (ECOC) [50]
which will be further examined below, since it provides a general description that
is also applicable to the method presented in the following chapter 4.

3.2.5 Injecting Randomness

Some of the hitherto described methods already use randomness, e.g. for resampling
data or for choosing feature-subspaces by chance. But also some learning algorithms
could be influenced directly by randomness, if they were based on initial values, e.g.
initial weights of a neural network for the backpropagation-algorithm. If individual
classifiers were initialized with different, i.e., random, values, they would be diverse.
Thus it would make sense to build an ensemble of such classifiers.

3.2.6 Summary

Ensemble methods are well established for obtaining highly accurate classifiers as a
combination of less accurate but diverse ones. Nevertheless, a unifying theoretical
framework of ensemble methods has not yet been developed, although the topic
can be considered to be one of the main directions in machine learning research
currently.

However, there does not seem to be any general superiority of one single ensemble
method. Which method can be expected to perform better strongly depends on the
actual problem (as it holds true for any individual learner). So for a huge amount
of training data randomized methods will usually perform better than resampling-
methods, since bootstrap replicates of a large set will be very similar to the set
itself and hence the diversity of individual hypotheses is not sufficiently supported.
Boosting methods on the one hand will generally work badly for very noisy data,
since they will weight the mislabeled noise more heavily, resulting in overfitting.
On the other hand they address the representational problem very directly by op-
timizing the weighted vote and hence gain usually good results in case of low noise
in data.

Initially we noted the possibility of averaging the bias of single nested dichotomies-
binarizations by building an ensemble. The natural ensemble-method for doing this
is evidently randomizing. We will keep this in mind and refer the respective method
of ensembles of nested dichotomies, which was proposed recently [66], in the follow-
ing chapter 4.

3.3 Ensembles as Binarization Technique

It was already noted (section 3.2.4) that ensembles built by output coding decom-
position methods are also tackling the task of binarization of polytomous problems
to several dichotomous ones. The most popular and best studied of these methods
is error correcting output coding (ECOC) [50]. We will now shortly survey this
method and a generalization of ECOC that provides the means to represent also
binarization techniques that were presented in the previous chapter 2.
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3.3.1 Error Correcting Output Codes

The idea of error correcting output codes (ECOC) is based on a comparison of one-
versus-others and a distributed output code approach to multi-class problems [50].
The distributed output code approach was introduced by Sejnowski and Rosenberg
[137]. They assigned a unique binary string of length n to each class. Then for
each bit position in these binary strings a binary function is learned. Usually these
binary functions are chosen to be meaningful properties in the domain. Often
the properties related to a function are to be independent. For classifying new
instances each of the n binary functions is evaluated resulting in an n-bit string s.
The instance is then assigned to the class that has assigned the n-bit string closest
to s according to a certain distance measure.

Dietterich and Bakiri [50] defined a common framework to compare both ap-
proaches, one-versus-others and distributed output code. Obviously, the n-bit strings
of the latter approach can be represented by a matrix whose rows are corresponding
to the classes and whose columns are related to the n binary functions corresponding
to the bit positions in the strings. The one-versus-others approach can be repre-
sented similarly. For k classes the matrix will then have k rows and k columns. The
entries on the diagonal will be 1. All other entries will be 0. That is, the bit string
of length k corresponding to the value 2k−i is assigned to class i. In both cases
the bit string resulting from predictions of all binary classifiers is decoded to the
class having the nearest of the bit strings assigned to. These bit strings assigned to
classes are called ‘output codes’.

As Dietterich and Bakiri now are pointing out, the prediction will become more
stable on average for well distributed output codes. For a minimum distance d
between any two output codes b(d − 1)/2c erroneous binary classifiers can be cor-
rected. Assuming the Hamming distance as distance measure for output codes, the
code corresponding to the one-versus-others approach has a minimum distance of
2. Thus it cannot correct any errors. Since output codes for the distributed output
code often are meaningful with bits corresponding to independent properties they
usually will also be separated by small Hamming distances. This motivates the
use of error correcting codes maximizing the Hamming distance between any two
output codes. On the other hand the bits in error correcting output codes will
not be meaningful any more, but constitute arbitrary disjunctions of the original k
classes. The question remains then whether these arbitrary disjunctions are easier
to learn than meaningful disjunctions. Dietterich and Bakiri report that the error
correcting output codes improved the generalization performance of a system. But
they note also that the binarizations based on error correcting output codes do not
produce results that are easy to understand since the individual binary functions
were indeed more difficult to be learned.

Note that the length l of codes and thus the number of employed binary classi-
fiers can be increased. This will improve the performance unless the correlation of
errors committed in each pair of bit positions will become to high. But for meaning-
less codes the errors committed by each of the l binary functions are substantially
uncorrelated. This property explains why ECOCs do generally perform well and
especially better than distributed output code where the bits are not generally inde-
pendent [92].

In summary, for good error correcting codes there are mainly two properties
required [51]:

1. Row separation: Each pair of codes should be well separated in Hamming
distance.

2. Column separation: The single binary classifiers related to the bits of codes
should be uncorrelated with respect to each other.
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Note that ECOC as a binarization technique reduces the number of required
base learners for k classes to dlog2 ke since this number is sufficient to create k
different binary codes of length dlog2 ke. Consider e.g. a problem of four different
classes. The problem can be completely binarized by two dichotomies each sepa-
rating two complementary subsets of classes from each other e.g. by the following
decomposition matrix:









1 1
1 0
0 1
0 0









However, it is recommendable to employ more than the minimal number of codes
to improve performance since arbitrary splits of the set of classes can not generally
be expected to be learned easily.

3.3.2 Generalization of ECOC

Mayoraz and Moreira [105] propose a generalization of ECOC by introducing a
third possibility. The binarizations are now considered to map the classes of the
original polytomy to {−1, 1} instead of {0, 1}. So 0 can be assigned to classes
not involved in the current task. This allows to consider also the all-versus-all
binarization in the same framework. As another decomposition the complete set of
non-trivial splits of the set of classes is evaluated by Allwein et al. [6] in the same
framework. Generally, Allwein et al. did not observe an improvement in performance
by using ternary codes. But different binarization techniques can be seen as special
cases of generalized ECOC and thus be directly compared in a common theoretical
framework. So by means of this generalization of ECOC following non-random
decomposition matrices for an example consisting of four classes relate to special
cases of binarization:

one-versus-others:








1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









all-versus-all:








1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1









minimal:








1 1
1 −1

−1 1
−1 −1









complete:









1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1
−1 −1 −1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1








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The classes are mapped to {−1, 1}. An entry mij = 0 designates the omitting
of instances belonging to class i during training of base learner j. Interestingly,
not considering class probability estimates the decoding of an all-versus-all ECOC
scheme resembles to the max wins strategy.

Introducing the third possibility, 0, does also require a redefinition of the dis-
tance measure. Allwein et al. [6] provide therefore two distance measures. The
Hamming decoding dH : (Rl, Rl) → R, assessing the distance between a row of the

decomposition matrix mi and the output ~f(x) = (f1(x), . . . , fl(x)) of the l binary
classifiers fj , j ∈ {1, . . . , l} for an instance x, is now defined as:

(

mi, ~f(x)
)

7→
l
∑

j=1

1 − signum(mijfj(x))

2
, (3.4)

where signum : R → {−1, 0, 1} is given by:

x 7→







1 if x > 0
0 if x = 0

−1 if x < 0
(3.5)

Note that this definition additionally provides the possibility of employing abstain-
ing classifiers, where fj(x) may return 0. The value 0, however, occurring either
in mij or in fj(x) (or even in both), will contribute 1/2 to the sum. The finally
predicted class i is obtained as

arg min
i

dH(mi, ~f(x)). (3.6)

Seen in this way of representation, all-versus-all again seems more favorable
than one-versus-others. Since the Hamming distance between any two rows in
the decomposition matrix for all-versus-all is bigger than in the decomposition
matrix for one-versus-others, the former will be able to compensate for more errors
– unsurprisingly, since one-versus-others can not compensate any error at all.

Allwein et al. [6] consider also a second distance measure that enables the de-
coding procedure to take a confidence level of the binary classifiers into account by
evaluating not only the sign of fj(x) but also the actual value. For an arbitrary loss
function L the distance measure dL : (Rl, Rl) → R is then given as:

(

mi, ~f(x)
)

7→
l
∑

j=1

L (mijfj(x)) , (3.7)

and the class is analogous to Hamming decoding

argmin
i

dL(mi, ~f(x)). (3.8)

Employing the proper loss-function L this distance function does allow also to de-
code the all-versus-all decomposition matrix according to the pairwise coupling
procedure.

3.4 Conclusion

In this chapter we surveyed some general methods to build ensembles and consid-
ered what is required for ensembles to improve performance with respect to their
members: accuracy and diversity. Based on these properties ensembles can be able
to overcome one or several limitations of single learners, at least to a certain degree:
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the statistical variance, the computational variance, and the error variance of single
learners.

Furthermore, we have seen that ensembles can also be considered as a more
general binarization technique. All-versus-all and one-versus-others were shown to
be special cases of generalized ECOC. Other than Hamming distances allow thereby
to decode according to arbitrary decoding procedures.

We will now have a closer look at the third binarization technique referred in
the previous chapter: systems of nested dichotomies. This technique is especially
suitable to build ensembles since different systems of nested dichotomies will gener-
ally expose a high error variance thus being diverse. Nevertheless, a single system
of nested dichotomies can usually be expected to be accurate to a sufficient degree
to build ensembles that improve performance with respect to their members.
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Chapter 4

Ensembles of Nested

Dichotomies

Systems of nested dichotomies (for convenience let us say also nested dichotomies
meaning a system of nested dichotomies) were already introduced as a standard
binarization technique (see chapter 2, section 2.2.3). We will now recall this method
in more detail (based on [65], and [66]) in order to consider ensembles of nested
dichotomies, a method which was recently proposed by Frank and Kramer [66].

4.1 Nested Dichotomies revisited

Any of the binarizations mentioned in chapter 2 provides a set of dichotomies de-
rived from the original polytomy. The dichotomies will become nested, if they are
produced by successive binary partitions of the set of classes of the polytomy. Thus,
by nesting the dichotomies one derives a binary tree that divides the set of classes
Ci associated with the internal node i into two disjoint subsets Ci1 and Ci2 , respec-
tively. These two subsets taken together contain all the classes in Ci. The nested
dichotomies’ root node contains all the classes of the corresponding polytomous
classification problem, whereas each leaf node contains a single class. Thus, for
an n-class problem, there are n leaf nodes and n − 1 internal nodes. Two exam-
ples of systems of nested dichotomies for a polytomy consisting of four classes are
illustrated by Figure 4.1.

Pseudocode for a procedure

fND : Class list → Nested Dichotomies (4.1)

to derive a random system of nested dichotomies for a given class-list is provided
in Table 4.1.

A classifier based on such a tree structure is built as follows: at every internal
node the instances pertaining to the classes associated with that node are stored,
and no other instances. Then the set of classes pertaining to each node is partitioned
into two subsets so that each subset holds the classes associated with exactly one
of the node’s two successor nodes. And finally a binary classifier is built as base
learner for the resulting dichotomous problem for each internal node.

A binarization by means of nested dichotomies requires the base learner to pro-
duce class probability estimates. But this is not a severe limitation, given that
most practical learning algorithms are able to do. Otherwise there are possibilities
to suit an algorithm to this requirement although this will not always be trivial. Be-
sides, also the widely used voting-technique pairwise coupling for the all-versus-all
binarization (chapter 2, section 2.2.2.3) requires this property of its base learners.

27
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PROCEDURE insert(Class, Index,Tree)

{

Subtree← subtree of Tree at Index;

Replace node Index in Treewith (Subtree,Class);

RETURN Tree;

}

PROCEDURE fND (ClassList)

{

IF length(ClassList) < 3 THEN

RETURN ClassList;

ELSE

(First,Second|RestList)← ClassList;

Tree ← (First,Second);

FOR i ← 3 TO length(ClassList) DO

NextClass← ith
element of ClassList;

Index← random number r : 0 < r < 2i− 3;

Tree ← insert(NextClass, Index,Tree);

RETURN Tree;

}

Table 4.1: Pseudocode for deriving a system of nested dichotomies for a set of
classes.
The pseudocode describes a procedure

fND : Class list → Nested Dichotomies

to derive a random system of nested dichotomies for a given list of classes. Classes are inserted at
random into a growing binary tree.

Since the dichotomies are nested, they are statistically independent [65]. Thus
decoding is straightforward: Given the base learners are providing class probability
estimates one could easily obtain class probability estimates also for the original
polytomous classification problem simply by multiplying the probability estimates
obtained from the two-class models along the path from the root to a leaf. Hence the
probability for an instance x to belong to a class c is conditioned by the probabilities
to belong to all sets of classes containing c.

More formally, as pointed out in [66], let Ci1 and Ci2 be the two subsets of classes
generated by a split of the set of classes Ci at internal node i of the system of nested
dichotomies, i.e., Ci1 and Ci2 are associated with the successor nodes of node i, and
let p(c ∈ Ci1 |x, c ∈ Ci) and p(c ∈ Ci2 |x, c ∈ Ci) be the conditional probability
distribution estimated by the model at node i for a given instance x. Then the
estimated class probability distribution for the original polytomous classification
problem is given by

p(c = m|x) =

n−1
∏

i=1

(I(m ∈ Ci1) p(c ∈ Ci1 |x, c ∈ Ci) + (4.2)

I(m ∈ Ci2 ) p(c ∈ Ci2 |x, c ∈ Ci)),

where I : boolean → {0, 1} is the indicator function (Definition 4.1), and the
product is over all the internal nodes of the tree.

Definition 4.1 (Indicator Function)
The indicator function I : boolean → {0, 1} is given by:

c 7→

{

1 if c
0 if ¬ c
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{1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

p(c ∈ {3,4}| x)

p(c ∈ {4}| x, c ∈ {3,4})p(c ∈ {3}| x, c ∈ {3,4})
p(c ∈ {2}| x, c ∈ {1,2})p(c ∈ {1}| x, c ∈ {1,2})

p(c ∈ {1,2}| x)

{1,2,3,4}

{1} {2,3,4}

{2} {3,4}

{3} {4}

p(c ∈ {2,3,4}| x)p(c ∈ {1}| x)

p(c ∈ {3,4}| x, c ∈ {2,3,4})p(c ∈ {2}| x, c ∈ {2,3,4})

p(c ∈ {3}| x, c ∈ {3,4}) p(c ∈ {4}| x, c ∈ {3,4})

(a) (b)

Figure 4.1: Two different systems of nested dichotomies for a classification problem
with four classes.
(Figures taken from [66]).

Since I(m ∈ Cis) is 0 for all nodes, that are not associated with class m, Equation
4.2 is equivalent to an evaluation of the path from the root to the leaf associated
with class m by multiplying together the probability estimates encountered along
that path.

Consider Figure 4.1 which shows two of the 15 possible systems of nested di-
chotomies for a polytomous classification problem consisting of four classes. It can
be seen easily that different systems of nested dichotomies may most likely pro-
vide different class probability estimates. So, using the tree in Figure 4.1 (a), the
probability of class 4 for an instance x is given by:

pa(c = 4|x) = pa(c ∈ {3, 4}|x)×

pa(c ∈ {4}|x, c ∈ {3, 4}).

Based on the tree in Figure 4.1 (b) on the other hand, the probability of class 4
for the very same instance x is:

pb(c = 4|x) = pb(c ∈ {2, 3, 4}|x)×

pb(c ∈ {3, 4}|x, c ∈ {2, 3, 4})×

pb(c ∈ {4}|x, c ∈ {3, 4}).

The class probability estimates obtained from different systems of nested di-
chotomies can be expected to differ, since they are based on different dichotomous
classification problems. Nevertheless, if there are no a priori reasons to prefer a
particular system of nested dichotomies, then there will also be no reasons to trust
one of the different class probability estimates more than the others. Thus, both of
the trees given in Figure 4.1 represent equally valid class probability estimators –
as do the 13 other possible systems of nested dichotomies that could be generated
for a four-class problem. Therefore all trees are to be treated as equally likely.

4.2 Ensembles of Nested Dichotomies

Based on this reasoning Frank and Kramer recently proposed an ensemble method
for nested dichotomies (Ensemble of Nested Dichotomies or END for short [66]),
forming overall class probability estimates by averaging the estimates obtained from
different trees. But even for a moderate number of classes such an ensemble could
not contain all possible systems of nested dichotomies, since the number of possible
systems of nested dichotomies grows more than exponentially:
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Figure 4.2: Growth of the number of possible binary-trees for a multi-class problem
of n classes.
According to Lemma 4.1 there are (2n− 3)!! possible systems of nested dichotomies for an n-class
problem, thus the number grows more than exponentially.

Lemma 4.1 (Growth of Number of Possible Nested Dichotomies)
For a set consisting of n classes there are

T (n) = (2n − 3) × T (n − 1)

T (1) = 1

possible systems of nested dichotomies.

Proof.

base case: For a one-class problem the tree has only one node, that is the root
and the only leaf, representing the only class.

induction case: There are (n − 1) + (n− 2) = 2n− 3 distinct possibilities to add
a new class into a tree that was already built for n− 1 classes, one for each of
the n − 1 leaf-nodes and the n − 2 internal nodes.

2

Expanding the recurrence relation given in Lemma 4.1 results in

T (n) = (2n − 3) × (2n − 5) × . . . × 3 × 1.

Using the double factorial, this could also be written as

T (n) = (2n − 3)!!.

For a raising number of classes it becomes therefore infeasible to consider all possible
systems of nested dichotomies even for problems with a moderate number of classes,
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as is illustrated in Figure 4.2. Frank and Kramer therefore suggest to build the
ensemble of nested dichotomies by taking a random sample from the space of all
distinct trees for a given n-class problem (based on sampling with replacement).

The uniformity of the sampling process ensures these averages to form an un-
biased estimate of the estimates that would have been obtained by building the
complete ensemble of all possible distinct nested dichotomies for a given n-class
problem. The ensemble could also be expected to perform better than any single
system of nested dichotomies because the respective nested dichotomies are diverse,
since they are created by random inserts of classes into the growing binary tree.
The accuracy of the ensemble members heavily relies on the base learners and the
difficulty of the dichotomous classification problems, thus the method should suffer
no loss with respect to other binarization methods.

4.3 Performance of ENDs

Frank and Kramer [66] found ENDs to perform equally well in terms of accuracy
with respect to other ensemble methods for multi-class learning in most cases. In
many cases they are reported even to improve significantly.

As an upper bound for the training time of one system of nested dichotomies
Frank and Kramer state the time it takes to build a classifier based on the one-
versus-others binarization (see chapter 2, section 2.2.1). However, at least for cer-
tain average cases this seems not to be the lowest upper bound. While one-versus-
others always requires n classifiers for an n-class problem, a system of nested di-
chotomies requires always n − 1 base learners. Furthermore, for one-versus-others
each base learner is usually trained using the instances of all classes, while the
base learners of nested dichotomies use the less classes (and therefore also the less
instances) the deeper they are nested. Since for most base learners training time
is dependent from the number of instances in a worse than linear relation, nested
dichotomies should gain a clear advantage even in the worst case when the tree
of nested dichotomies is degenerated to a list. Assuming the training time given
by t : N → R

+
0 with respect to the number of instances used for training and nm

training instances being equally distributed over n classes (thus being m instances
for each class), the worst-case of training time is given by:

Ttraining-wc(n, m) =

n
∑

i=2

t(im). (4.3)

The best-case of training time occurs for a perfectly balanced tree where the number
of training instances is divided by 2 for each level of the tree, that is:

Ttraining-bc(n, m) =

n
∑

i=2

t
( n

2dlog2 ie−1
m
)

. (4.4)

Recall the training time for the one-versus-others approach as given in Equation
2.3 is

Ttraining(n, m) =

n
∑

i=1

t(nm).

Thus the training time for training an END with k members is bounded from
above by k × Ttraining-wc as given by Equation 4.3, assuming the instances being

equally distributed over all classes. But even when this assumption does not hold,
the worst case training time for a system of nested dichotomies will be less than
the training time of an one-versus-others binarization, since only the root of the
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respective binary tree is involved with all instances, while any other node is to be
trained with only a fraction of them.

4.4 Representation of ENDs by ECOCs

In chapter 3, section 3.3, we considered ECOC as a general framework to describe
binarization techniques. Of course, also nested dichotomies can be defined by de-
composition matrices, as was already stated by Frank and Kramer [66]. Recall the
examples given in Figure 4.1. The respective decomposition matrices are given as
follows:

(a)









1 1 0
1 −1 0

−1 0 1
−1 0 −1









(b)









1 0 0
−1 1 0
−1 −1 1
−1 −1 −1









Defining the proper decoding for these decomposition matrices as resembling to
the decoding of nested dichotomies would require primarily a loss-function based
decoding as defined in Equation 3.7. Moreover the loss-function to be employed by
the decoding procedure has to be dependent on the current system of nesting and
the distances provided by the loss-function for matrix (a) would have to be different
from the distances provided for matrix (b).

4.5 Conclusion

We considered systems of nested dichotomies as a binarization technique. Nested
dichotomies impose a certain order on the set of classes. A single random system
of nested dichotomies can therefore be expected to be quite biased. Nevertheless
a single system employed as binarization method usually can reach a reasonable
degree of accuracy.

Even for a moderate increase of number of classes the space of possible systems
of nested dichotomies grows rather fast. This involves also a high error variance for a
set of moderate size of randomly chosen systems of nested dichotomies. Thus nested
dichotomies are ideal components to build an ensemble. Concordant with theory,
ensembles of nested dichotomies were shown to work well on a range of different
data compared to other binarization techniques as all-versus-all, one-versus-others,
and ECOC (random and exhaustive) as well as to multi-class methods [66].



Chapter 5

Incorporating Domain

Knowledge into Learning

Schemes

Any machine learning scheme is usually based on some assumptions concerning the
hypotheses to be learned. Thus it is e.g. biased to search a hypothesis only within a
certain subspace of the general hypothesis space. Indeed, learning without any bias
is futile [109]. However, choosing a hypothesis space that is biased in a supporting
direction is mainly a question of considering domain knowledge.

5.1 Different Possibilities for Incorporation of Do-

main Knowledge

First of all a user of machine learning tools conducting an experiment does implicitly
incorporate domain knowledge by selecting the machine learning scheme that is most
appropriate to the explored data.

On the other hand there is a broad variance of machine learning schemes allowing
the incorporation of domain knowledge explicitly, as methods of inductive logic
programming or Bayesian learning. Schapire et al. [134] proposed also a method to
incorporate prior knowledge into boosting.

Furthermore, some algorithms may also take advantage from more specifically
defined attributes. So, attributes could not only be discerned into numerical and
nominal attributes, they could also exhibit an ordering of values. And such an
ordering could either include a zero point (e.g. time intervals) or not (e.g. dates),
it could either be linear (as Euclidean distances or educational degrees) or circular
(as angles or the human perception of colors). Moreover several attributes may be
related with each other, semantically, causally, or functionally. Or attributes are
weighted based on domain knowledge. Besides, there could (and should) expert
knowledge already be incorporated in extracting the features for a certain learning
problem.

Reinforcement learning is an exemplary field of research, where possibilities for
incorporating domain knowledge into the learning procedure have been discussed
since several years. So the consideration of hierarchical structures is often more
appropriate to complex tasks than a flat search space. It is possible to define the
hierarchies in advance, as described in a general manner by Dietterich [45], [47],
and [48]. For learners that have access to a complete and correct domain theory,
explanation-based learning can be used to allow more appropriate generalizations
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of single experiences by a reinforcement learner [52] or to improve learning rate and
asymptotic performance [139]. This again can be adapted to hierarchies of goals
[141].

However, there is no general theory of incorporation of domain knowledge de-
veloped so far.

5.2 Approaches Considering Hierarchically Struc-

tured Classes

A topic of special interest is taking into account relations between classes. Often
there are subsets of classes whose members are more similar to one another than to
classes that are not members of the respective subset. This means, the classes are
organized in a hierarchy. The usage of simple binarization schemes (chapter 2) is
based on the assumption that the classes are not belonging to a natural hierarchy.
One would expect especially the one-versus-others binarization to suffer loss of
accuracy, if some classes were closer to one another than to others in the respective
feature-space, as also Rifkin [129, p. 34] predicts.

But it is possible to incorporate the knowledge concerning a hierarchical struc-
ture exhibited by the classes into the learning procedure. A few years ago this idea
was introduced in text mining. Dumais and Chen e.g. performed a one-versus-others
classification for a level-wise grouping of classes [58]. This approach was based on
several efforts to establish and make use of hierarchical structure on text documents
(confer the referenced related work in [58]). Interesting is also the work of Schubert
et al. concerning classification of proteins with respect to their function [136]. While
the emphasis in these works is put on use of hierarchical structures for sake of effi-
ciency, we will be more interested in increase of effectiveness in terms of accuracy
by incorporating knowledge concerning hierarchically structured classes: Building
a classifier with respect to a predefined hierarchy is motivated for us mainly by
the expectation to restrict the hypothesis space in a suitable way and therefore to
reduce the error variance exhibited by the respective learners.

5.3 Conclusion

We considered possibilities to incorporate domain knowledge into learners. Of inter-
est is thereby especially to consider pronounced hierarchical relationships between
classes. We are aware of several approaches tackling this task. Most of them, how-
ever, are especially concerned with text classification problems (except for [136]).
They also seem specialized to specific data. Yet particularly biology provides many
different fields of application where to take into account a hierarchy of classes can be
considered to be more appropriate to the respective problem. As a matter of fact,
in the realm of scientific biology hierarchies are found since the days of Aristotle.

Furthermore the approaches referred above mainly focus on improving efficiency
by making use of a hierarchy of classes. But obviously a properly defined hierarchy
will restrict the hypothesis space in a suitable way. Thus the error variance of
any learning scheme can be expected to decrease by incorporation of knowledge
concerning the respective hierarchy.

We therefore consider a more general framework for hierarchical classification to
be of interest. In the next part we are going to develop a method for classification
where classes are related in an arbitrary hierarchy. This method will unite the fields
that were introduced in this part since it is on the one hand based on ENDs, an
ensemble approach tackling binarization. On the other hand it incorporates domain
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knowledge concerning hierarchical structure of classes. Note that our method is
motivated by biology, but it is not restricted to biological applications.
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Ensembles of Hierarchically

Nested Dichotomies
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Chapter 6

Hierarchical Classification

Using Ensembles of Nested

Dichotomies

In the previous part we have reviewed some approaches to several different tasks for
machine learning: Applying binary classifiers to a polytomous classification problem
(chapter 2), building ensembles to improve accuracy of classification (chapter 3),
and incorporating domain knowledge into the classification method, which is also
expected to improve accuracy (chapter 5). The first and second of those tasks was
already combined in the method END, which was introduced in chapter 4.

We are now going to propose a new machine learning method which is attacking
those tasks in combination: We build ensembles of nested dichotomies dependent
on domain knowledge concerning the relation between classes. That is, we consider
classification problems over classes, where some classes are stronger related to each
other than to some other classes. It was already shown, that nested dichotomies
naturally impose such relations to the classification problem they are applied to,
even if there is no structure of that kind between the classes. In general, this is a
drawback for nested dichotomies. But it could turn out to be an advantage, if one
were able to choose the correct subset of systems of nested dichotomies for a given
classification problem over structured classes. Unless a given hierarchy describes
the actual relationships between classes essentially wrongly the respective subset of
nested dichotomies can be expected to exhibit a reduced error variance compared
to an unrestricted sample of nested dichotomies of the same size.

The outline of this chapter is as follows: We will first give an idea of classification
problems concerning classes which are structured in the notion given above. In
general, such a structure can be referred to as a hierarchy of classes. A couple of
definitions for handling hierarchies of classes will be provided and we will consider
how to represent a hierarchy as a binary tree. This will lead us most naturally to
a method for building systems of nested dichotomies that are adapted to the class
hierarchy. Based on these considerations we will present the new machine learning
method, ensembles of hierarchically nested dichotomies, which is most suggesting
given the previous considerations.

6.1 Hierarchies of Classes

In real world tasks of machine learning one often encounters classification problems
concerning a set of classes, where the instances of some subsets of classes are quite
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more similar to each other than they are to instances belonging to other classes not
contained in the respective subset. It is also possible to consider single classes to be
more similar to certain subsets than to others, that is, some subsets of the original
set of classes may contain only one class. On the other hand some subsets may
contain even smaller subsets instead of single classes. We refer to such systems of
nested sets as hierarchies of classes. To define a hierarchy of classes we are first to
redefine the notion of a set of classes inductively (assuming sets of classes never to
be empty):

Definition 6.1 (Higher Order Set of Classes)
A higher order set of classes contains either exactly one class or several higher
order sets of classes.

1. If a higher order set of classes represents a single class, it will contain
exactly one class. It is then of order one.

2. If a higher order set of classes represents n > 1 classes, it will contain
m : 2 ≤ m ≤ n disjoint higher order sets of classes, whose altogether
represent n classes. One could define its order as the maximum order of its
members plus one.1

A set of classes S is corresponding to a higher order set of classes H and vice
versa, if and only if it contains exactly those classes, which are represented by the
higher order set of classes H or by those higher order sets of classes T , where a
sequence of length i ≥ 0 of higher order sets of classes {Ij}j=1,...,i exists such that

T ∈ I1 ∈ . . . ∈ Ii ∈ H.

Then we say S(H) := S to be the set of classes corresponding to H, and two
higher order sets of classes Hi and Hj are said to be disjoint, if and only if

S(Hi) ∩ S(Hj) = ∅.

In the remainder we will often use a transitive relation of membership on higher
order sets of classes. We therefore define:

Definition 6.2 (Membership on Higher Order Sets of Classes)
We define a transitive relation of membership in higher order sets of classes by
M ⊆ (higher order set of classes × higher order set of classes) such that (R,S) ∈
M∧ (S, T ) ∈ M ⇒ (R, T ) ∈ M. More formally M is inductively given by:

∀Hi,Hj higher order sets of classes :

(Hi,Hj) ∈ M : ⇐⇒

Hi ∈ Hj

∨ (∃Hm : Hi ∈ Hm ∧ (Hm,Hj) ∈ M)

Obviously then the following statement holds true:

(Hi,Hj) ∈ M ⇒ S(Hi) ⊆ S(Hj)

Let us note that the relation between sets of classes and higher order sets of
classes is not bijective. Although

S : higher order sets of classes → sets

1Its order may also well remain undefined, since we will not hinge on the exact order of any
higher order set of classes.
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is an injective relation, S−1 is not defined since there could possibly be composed
several distinct higher order sets of classes for a single set of classes. However, the
higher order set of classes corresponding to a set of one class is defined and will be
identical with the respective set. Given this inductive notion of higher order sets of
classes we define:

Definition 6.3 (Hierarchy of Classes)
A hierarchy of classes corresponding to a set of one class is identical to the

respective set.
For a set of classes C where |C| > 1 a hierarchy of classes H is a set of

hierarchies of classes, where its members correspond to disjoint subsets Si ⊂ C,
C =

⋃

i Si. That is a hierarchy of classes corresponds to a higher order set of
classes that contains only disjoint members each fulfilling this same condition.

Furthermore will each subset Si contain only classes which are more similar to
one another than they are to classes not contained by the respective subset, given
an arbitrary similarity measure.

More formally: Let
s : class × class → R

be a similarity measure. Let S be an arbitrary subset of the set of classes C (S ⊆ C).
Then a higher order set of classes H is a hierarchy of classes which is defined
w.r.t. s for C, if and only if:

1. S(H) = C, and

2. ∀ (Hi,Hj),Hi ∈ H,Hj ∈ H :

S(Hi) ∩ S(Hj) = ∅, and

3. ∀HS , S(HS) = S,HS 6= H:

(HS ,H) ∈ M ⇒ ∀ (ci, cj), (ci, cm),

({ci},HS) ∈ M∧ ({cj},HS) ∈ M∧ ({cm},HS) /∈ M :

s(ci, cj) > s(ci, cm).

Definition 6.2 provides the means to define a reflexive, antisymmetric and tran-
sitive relation � as a subset of the Cartesian product of hierarchies of classes
(hierarchies of classes × hierarchies of classes), that is hierarchies of classes can be
partially ordered:

Definition 6.4 (Partially Ordering of Hierarchies of Classes)
A hierarchy of classes H is less general than or equal to another hierarchy of classes
K, if and only if all members of K are also members of H. More formally this is
denoted as:

H � K : ⇐⇒ ∀Km : (Km,K) ∈ M ⇒ (Km,H) ∈ M.

The relation � is reflexive, antisymmetric and transitive. Antisymmetry implies:

H = K ⇐⇒ H � K ∧ K � H.

Other potentially useful relations can easily be based on this partial order:

H � K : ⇐⇒ H � K ∧ H 6= K

H ≺ K : ⇐⇒ K � H

H � K : ⇐⇒ K � H
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Obviously a hierarchy of classes corresponds to a special system of nested sets
and could thus be represented as an unordered tree. For the sake of further analysis
we state explicitly:

Lemma 6.1 (Tree Representation of a Hierarchy of Classes)
The relation between hierarchies of classes and unordered trees is a bijection.

Proof.

injectivity The representation of a hierarchy of classes H for a given set of classes
C as a tree is straightforward: The root of the tree is to be associated with
the original set of classes C, each node is to be associated with a subset
Si ⊂ C which corresponds to a hierarchy of classes Hi ∈ Hj , when its parent
is associated with the subset Sj ⊂ C corresponding to the hierarchy of classes
Hj . Then the following statement obviously holds true:

(Hi,Hj) ∈ M∧ ∀Hm 6= Hi, (Hm,Hj) ∈ M : (Hi,Hm) /∈ M.

Furthermore each node gets a child for each element of the hierarchy of classes
Hi related to the subset Si ⊂ C it is associated with. Thus the classes will be
represented as sets of classes of size one by the leaves of the tree representing
the hierarchy of classes H.

surjectivity Obviously a tree whose leaves are associated with disjoint sets of
classes of size one can also be represented as hierarchy of classes. A node will
then represent the set of the items represented by its children, and all these
sets will be disjoint w.r.t. their siblings.

2

For a tree constructed as described in the proof of Lemma 6.1, obviously the
children of an inner node nodei will be more similar to one another than they will
be to siblings of nodei. Each leaf will correspond uniquely to a certain class. A
single class will not occur in more than one leaf.

Of course a hierarchy of classes will be defined, even if there is no inherent
structure in the set of the classes. The hierarchy will then be a tree of depth one,
since all the classes will be children of the root. Such a hierarchy is flat, and it
makes no sense to use a flat hierarchy, since it will not provide any information
which is not already provided by the set of classes.

So consider a simple example for a pronounced hierarchy: The data presented
in Figure 6.1 consist of 16 classes which are referred to as A1, A2, A3, A4, B1, B2,
B3, B4, C1, C2, C3, C4, D1, D2, D3, and D4. Obviously, the classes A1, A2, A3,
and A4 are more related to one another than they are to any of the other classes.
The same is true for each of the subsets {B1, B2, B3, B4}, {C1, C2, C3, C4}, and
{D1, D2, D3, D4}. Thus the set of classes could meaningfully be represented as a set
of sets like {{A1, A2, A3, A4}, {B1, B2, B3, B4}, {C1, C2, C3, C4}, {D1, D2, D3, D4}}.
We could refer to these four subsets as superclasses.

Definition 6.5 (Superclass)
A superclass represents a set of classes and can be treated as class itself. Thus
a superclass could also represent a set of superclasses, that is a higher order set
of classes.

Two superclasses are said to be disjoint, if the corresponding higher order
sets of classes are disjoint.
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Figure 6.1: Hierarchically structured classes.
These data are composed of 16 classes, that are organized in four superclasses, A, B, C, and D,
respectively, each containing 4 base classes.
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Figure 6.2: A hierarchy of classes as tree.
The hierarchy of the 16 classes of the data presented in Figure 6.1. The root of the tree represents
all 16 classes, the root’s four children represent the four superclasses, A, B, C, and D, respectively,
and the children of those represent the base classes. This representation of the hierarchy as tree is
equivalent to the description as set of sets: {{A1, A2, A3, A4}, {B1, B2, B3, B4}, {C1, C2, C3, C4},
{D1,D2,D3, D4}}, according to Lemma 6.1.
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Lemma 6.2
A hierarchy of classes is a set of disjoint superclasses.

Proof.
The claim of Lemma 6.2 follows directly from Definitions 6.1, 6.3, and 6.5.

2

Given this notion of superclass, we can describe the data presented in Figure
6.1 as consisting of 4 superclasses, say A, B, C, and D, each representing four base
classes, A1 to A4, B1 to B4, C1 to C4, and D1 to D4, respectively. The respective
hierarchy of classes is given in Figure 6.2.

Note that in classification tasks performed in the hitherto given context of hier-
archies of classes an encountered class could be either a base class or a superclass,
that is a set of classes its members being in turn base classes or superclasses.

6.2 Hierarchy-Preserving Binarization of Trees

To employ nested dichotomies as binarization of a polytomous classification problem
involving hierarchically structured classes we are now to find a binary tree which
preserves the hierarchy. Despite Lemma 6.1, the relation from hierarchies of classes
to binary trees is neither injective nor surjective unless the binary tree is assumed
to be the exact representation of the hierarchy of classes. If, however, the binary
tree were the exact representation of a hierarchy of classes according to Lemma
6.1, each level of the hierarchy would unite two sub-hierarchies. If, otherwise, a
hierarchy consists not already of nested dichotomies, it could possibly be represented
by several binary trees and any binary tree could possibly be read as representation
of several very different such hierarchies.

A system of nested dichotomies as it was introduced so far was usually to repre-
sent a flat hierarchy. But it could also be seen as a representation of an ordered sys-
tem of classes, where the binary tree representing the system of nested dichotomies
also represents the order of the classes, that is the hierarchy of classes (recall the
‘ordered class binarization’ as defined by Fürnkranz [69, Def. 3] and described in
chapter 2, section 2.2.3). But few constraints are sufficient to define the binary
trees which are valid representations of a hierarchy. Also binary trees representing
a hierarchy are easily to construct given the tree defining the respective hierarchy.

6.2.1 Properties of Valid Representations of Hierarchies of

Classes as Binary Trees

If a binary tree is to represent an arbitrary hierarchy of classes H defined for a set
of classes C that is not binary itself, it will be the tree representation of a more
specialized hierarchy of classes H′ for the same set C according to Lemma 6.1. We
will refer to hierarchies of classes that are specialized in this manner as binary
hierarchies of classes:

Definition 6.6 (Binary Hierarchy of Classes)
A binary hierarchy of classes is a hierarchy of classes that contains either

exactly one class or exactly two binary hierarchies of classes. It corresponds to
a binary tree according to Lemma 6.1.

If a hierarchy of classes H is denoted as Hbin , it will be a binary one.

A valid binarization of a hierarchy of classes is therefore defined as follows:
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Definition 6.7 (Valid Binarization of a Hierarchy of Classes)
A binary hierarchy of classes Hbin will be a valid binarization of a hierarchy

of classes H, if and only if all hierarchies of classes that are members of H are
also members of Hbin , that is if and only if it is less general than or equal to H
(Hbin � H) according to Definition 6.4.

Obviously for any other hierarchy of classes Hn contained by Hbin the corre-
sponding set of classes will be a subset of at least one set of classes corresponding
to a hierarchy of classes Hm contained by H as well as a superset of at least one set
of classes corresponding to another hierarchy of classes Ho contained by H. More
formally we can state this property as:

∀Hn, (Hn,Hbin ) ∈ M, (Hn,H) /∈ M :

∃Hm, (Hm,H) ∈ M : S(Hn) ⊂ S(Hm)

∧ ∃Ho, (Ho,H) ∈ M : S(Ho) ⊂ S(Hn).

Representing a hierarchy of classes that is a valid binarization of a given hierar-
chy of classes as tree would provide us directly with the representation of a system
of nested dichotomies that incorporates the domain knowledge concerning the hier-
archical structure of the set of classes – and vice versa, of course. So the question
is, how to find those valid binarizations.

6.2.2 Algorithmic Approach to Valid Binarization of Trees

Fortunately, construction of a valid binarization of a hierarchy of classes is straight-
forward like binarization of a tree: To binarize a hierarchy of classes represented by
a tree we take the root of the tree as root of a binary tree and the children of the
root as leaves of the binary tree in any order. For any of the children of the root
in the original tree having children itself, we take the respective subtree rooted at
the respective node and treat it the same way, replacing the respective node in the
binary tree created before with the newly created binary tree. Let us state more
formally:

Lemma 6.3 (Hierarchy-Preserving Binarization)
Let H be a hierarchy of classes. Let

fND : Class list → Nested Dichotomies

be a procedure to derive a system of nested dichotomies for a given set of classes
as defined in Table 4.1. Then the following procedure for binarization of H will
preserve the hierarchy according to Definition 6.7:

1. Treat the members of the hierarchy of classes as (super-)classes according to
Definition 6.5 and Lemma 6.2 and build a binary tree by applying fND to the
set of the members.

2. Apply recursively step 1 to each member that contains more than one class.
Replace the leaf of the previously created binary tree corresponding to the re-
spective superclass by the newly created binary tree.

The binarized hierarchy of classes is the hierarchy of classes corresponding to the
finally resulting binary tree.

Proof.
The given construction of the binary tree for a hierarchy of classes H makes sure
that the binary hierarchy of classes Hbin corresponding to the resulting binary tree
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PROCEDURE fHND(ClassList)

{

Tree ← fND (ClassList);

Leaves← list of leaves of Tree;

WHILE Leaves contains superclasses DO

FOR i ← 1 TO length(Leaves) DO

Leaf ← ith
element of Leaves;

IF Leaf is superclass THEN

Replace Leaf in Tree with fND (Leaf);

Leaves← list of leaves of Tree;

RETURN Tree;

}

Table 6.1: Pseudocode for binarization of a hierarchy of classes.
The presented function binarizes a given hierarchy of classes according to Lemma 6.3 and therefore
preserves the hierarchy.

will contain any hierarchy of classes Hm, (Hm,H) ∈ M. Thus it will be a valid
binarization of H according to Definition 6.7.

2

6.2.3 Hierarchically Nested Dichotomies

The construction of valid binarizations of hierarchies of classes given in Lemma
6.3 already provides a system of nested dichotomies. Thus the procedure fND can
be employed to derive a system of nested dichotomies reflecting a given hierar-
chy of classes. This is illustrated in Table 6.1. We refer to a system of nested
dichotomies derived from a hierarchy of classes by this procedure as system of hi-
erarchically nested dichotomies or simply hierarchically nested dichotomy (HND).
A hierarchically nested dichotomy has the same properties as a general nested di-
chotomy (chapter 4). Especially the estimated class probability distribution for
hierarchically nested dichotomies and thus the decoding is given by Equation 4.2
as for general nested dichotomies. But furthermore it reflects a hierarchy of classes
since a superclass will not be splitted until the superclass is separated from all its
siblings. That is, superclasses become nested before their members will do so.

6.2.3.1 Reduction of Error Variance of NDs by Reflecting a Hierarchy

Basically one can think of the constraints for valid binarizations of hierarchies of
classes as restrictions of the space of possible nested dichotomies for the respective
set of classes. This is illustrated by the different rates of growth for the unrestricted
space in comparison to the restricted space of possible nested dichotomies, although
we take a simplified type of hierarchies of classes corresponding to completely bal-
anced trees with an equal branching rate for each node. Figure 6.3 illustrates the
growth rates for such examples. More formally the examples are restricted as fol-
lows: For a hierarchy describing n classes in l levels at each level the respective
superclass is divided in c subclasses (thus the number n of classes equals cl). The
growth of valid binarizations for such hierarchies of classes would be described by
the following Lemma:

Lemma 6.4 (Growth of Possible Valid Binarizations)
For a completely balanced tree providing a hierarchy of n = cl classes, that is the

number of leaves, where l is the number of levels of the hierarchy, and c is the
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Figure 6.3: Comparison of the growth of spaces of possible nested dichotomies, and
possible hierarchically nested dichotomies.
Number of possible nested dichotomies (restricted and unrestricted, respectively) against the num-
ber of classes (c2).

(a) Comparison of T (c2) (o), and H(c2) (x) (that is for 2 levels).

(b) Ratio of H(c2)
T (c2)

(that is for 2 levels).

Both spaces grow more than exponential, but even the ratio decreases at a more than exponential
rate, that is T (n) growths considerably faster.
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number of children for each internal node, there are

H(n) = H(cl)

= T (c)
1−cl

1−c

valid binarizations, where T (n) is the number of possible nested dichotomies for
n classes, as given in Lemma 4.1.

Proof. (Induction on the number of levels)

base case: For l = 1, there is no hierarchy and we gain the unrestricted number
of possible nested dichotomies for c1 = n classes, which is T (c).

induction hypothesis: For l levels there are H(cl) = T (c)
1−cl

1−c valid binarizations.

induction case (l → l + 1): Any valid binarization for level l provides cl leaves.
Incorporating the level l + 1 adds T (c) possible nested dichotomies consisting
of the respective c classes to each of the cl leaves for each of the H(cl) valid
binarizations of level l, that is, for each of H(cl) valid binarizations there are
cl combinations of T (c) possibilities. Thus we gain:

H(cl+1) = H(cl) × T (c)cl

= T (c)
1−cl

1−c × T (c)cl

(induction hypothesis)

= T (c)
Pl−1

i=0 ci

× T (c)cl

(geometric series)

= T (c)
Pl

i=0 ci

= T (c)
1−cl+1

1−c (geometric series).

2

The assumption that the hierarchy is completely balanced and that each in-
ternal node of the corresponding tree has the same number of children is by no
means necessary for our method. But it does suffice to illustrate the restriction of
the space of possible nested dichotomies under the given constraints in compari-
son to the unrestricted space. As Figure 6.3 shows both spaces are growing more
than exponentially, but the restricted space of hierarchically nested dichotomies
at a distinctly slower rate. Thus the ratio of the size of the restricted space to
the unrestricted space decreases also at a more than exponential rate. Note that
the restriction will be even stronger for hierarchies of classes corresponding to an
unbalanced tree usually.

The reasoning above allows to conclude that considering a proper hierarchy
will restrict the hypothesis space of nested dichotomies to a subset of all nested
dichotomies exhibiting a decreased variance of error since the space of possible
hierarchically nested dichotomies is considerably restricted compared to the space
of possible arbitrarily nested dichotomies. On the other hand the error variance
will still be high since the space of possible hierarchically nested dichotomies still
grows at an over exponential rate.

6.2.3.2 Impact of a Hierarchy on the Classification Task

Since for a class c some sets of classes occurring in the nested dichotomy from the
path to the leaf corresponding to c will correspond to a superclass of c the decision
of the ND for c is conditioned by the former decisions for all superclasses of c. This
makes sense and corresponds to the intuition which leads to the incorporation of
domain knowledge concerning hierarchies of classes at first sight. But we ought to
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{1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

p(c ∈ {3,4}| x)

p(c ∈ {4}| x, c ∈ {3,4})p(c ∈ {3}| x, c ∈ {3,4})
p(c ∈ {2}| x, c ∈ {1,2})p(c ∈ {1}| x, c ∈ {1,2})

p(c ∈ {1,2}| x)

Figure 6.4: High-level classifications can be overruled by low-level classifications.
Simple example of an HND. superclasses are {1, 2} and {3, 4}, respectively. A low-confidence
assignment to a superclass can be overruled by a high-confidence assignment to a class at lower
levels.

note that the separation of some superclasses might be difficult. A misclassification
at a high level is unlikely, though possibly, to be compensated for at a lower level.

On the other hand a classification at a high level that is correct, but with low
confidence, could be overruled by assignments at lower levels that are incorrect, but
with high confidence. This could be possible, since all but the correct classifiers at
a lower level are not trained with respect to the proper class. Consider following
example: For the simple HND given in Figure 6.4, let the probabilities provided by
the base learners for an instance x be given by:

p(c ∈ {1, 2}|x) = 0.4

p(c ∈ {3, 4}|x) = 0.6

p(c = 1|x, c ∈ {1, 2}) = 0.95

p(c = 2|x, c ∈ {1, 2}) = 0.05

p(c = 3|x, c ∈ {3, 4}) = 0.4

p(c = 4|x, c ∈ {3, 4}) = 0.6

Then the decoded probabilities would be given by:

p(c = 1|x) = p(c ∈ {1, 2}|x)× p(c = 1|x, c ∈ {1, 2})

= 0.38

p(c = 2|x) = p(c ∈ {1, 2}|x)× p(c = 2|x, c ∈ {1, 2})

= 0.02

p(c = 3|x) = p(c ∈ {3, 4}|x)× p(c = 3|x, c ∈ {3, 4})

= 0.24

p(c = 4|x) = p(c ∈ {3, 4}|x)× p(c = 4|x, c ∈ {3, 4})

= 0.36

The class of x would therefore be decoded as 1, even though 4 might be the
correct assignment. The example is given in [136] to characterize a drawback of
approaches that do not prune subtrees of hierarchically structured classification ap-
proaches following only the single path with the respective top-confidence. While
this setting could eventually occur as a problem for a single ND or any other hierar-
chically structured classification approach, it is rather unlikely and we do not follow
the argument given in [136]. The setting is even more unlikely for HNDs, given
a properly defined hierarchy, since a well defined hierarchy is supposed to allow a
clear separation of superclasses. However, note that ensembles of NDs are to reduce
that kind of error variance. Therefore, we will consider ensembles of HNDs as well
in the next section. A more convincing argument given by Schubert et al. [136] is
to consider the pruning of subtrees that are not at top-confidence as a matter of
efficiency – but this is not primarily in the scope of our investigation since we are
more interested in effectiveness.



50 CHAPTER 6. HIERARCHICAL CLASSIFICATION

(a)

(b)

Figure 6.5: Incorporating domain knowledge can reduce complexity of a classifica-
tion task.
The classification problem concerning the polytomy given in Figure 6.1.

(a) Not taking into account domain knowledge.

(b) Taking into account domain knowledge concerning the pronounced hierarchy of the classes.
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(a) (b)

(c)

Figure 6.6: Example of the recursive binarization procedure.
The figure shows three partial steps of the binarization procedure for the classification task given
in Figure 6.5b, corresponding to the hierarchy of classes given in Figure 6.2:

(a) a possible binarization of the four superclasses (one out of T (4) = 15),

(b) a possible binarization of the subclasses of B (one out of T (4) = 15), and

(c) the fully binarized problem (one possible binarization out of T (4)5 = 759, 375 – unrestricted
there would have been T (16) = 6.19 × 1015 possible systems of nested dichotomies).
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However, if the hierarchy of classes is merely pronounced, the classification task
could generally be expected to become easier by taking the hierarchy into account.
Reconsider the example of Figure 6.1. Any approach to the polytomous classifi-
cation problem not taking into account the pronounced hierarchy would have to
discriminate 16 classes directly against each other. Taking into account knowl-
edge concerning the pronounced hierarchy of classes reduces the complexity of the
classification task considerably: Five more simple classifiers are each to learn the
discrimination of four classes only as illustrated in Figure 6.5.

This is exactly how hierarchically nested dichotomies work. Basically a system of
nested dichotomies is built for the classification problem concerning the superclasses
and another system of nested dichotomies for each classification problem concern-
ing subclasses of the respective superclass and so on. The level-wise procedure is
illustrated in Figure 6.6.

Although the procedure results in an overall system of nested dichotomies, treat-
ing the systems of nested dichotomies for different levels of the hierarchy as separate
systems (as implied by the illustration in Figure 6.6) would make no difference in
theory. However, practically this would provide another benefit since superclasses
could separate at different levels by different sets of features as hierarchies of classes
could be defined for different levels with respect to different similarity measures (this
is already implied in Definition 6.3). Considering the systems of nested dichotomies
on different levels as separate classifiers one could also use different sets of features
for different levels, or use different sets of parameters to train them. Even using
different base classifiers for different hierarchical levels could make sense.

6.3 Ensembles of Hierarchically Nested Dichoto-

mies

Building ensembles of several systems of hierarchically nested dichotomies (EHNDs)
is suggesting for the very same reasons as it is to compose ensembles of several
systems of nested dichotomies (chapter 4). Especially reduction of error variance is
still an issue.

6.3.1 Reducing Variance of Error

Although a properly defined hierarchy will already reduce the error variance in
the set of possible hierarchically nested dichotomies, this set will be still large.
Thus the single system of hierarchically nested dichotomies can be expected to be
more accurate than an arbitrary system of nested dichotomies, but still biased and
diverse from other HNDs. To reduce the remaining error variance is therefore the
main motivation for building an ensemble.

A system of hierarchically nested dichotomies is biased due to its correspondence
to a binary hierarchy of classes (Definition 6.6) which will generally not be identical
to the hierarchy of classes the system of hierarchically nested dichotomies was built
for. Thus the hierarchically nested dichotomy will imply a strong bias towards a
hierarchy of classes which is basically insufficiently general and therefore essentially
wrong. Another HND built for the very same hierarchy of classes will exhibit a bias
towards another binary hierarchy of classes. Several HNDs will therefore be diverse,
so building an ensemble of them will make sense, and an ensemble of HNDs will
usually improve over a single system of HNDs.
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6.3.2 Hierarchies as Proper Restrictions of Space of Hypothe-

ses

On the other hand the diversity of HNDs is restricted by the hierarchy of classes
in comparison to general nested dichotomies. Thus one could expect ensembles of
HNDs to improve upon ensembles of NDs, if and only if the respective hierarchy of
classes is a proper description of the relations between the classes in the feature space
since the single HNDs can then be expected to be more accurate than an arbitrary
ND. Otherwise the restriction will merely cause the errors of the single HNDs to be
stronger correlated than the errors of general NDs would be since the diversity of
NDs is less restricted than the diversity of HNDs. Thus the ensemble of HNDs could
be supposed to predict with worse accuracy compared to an END in that case. The
comparison of performance of EHNDs and ENDs therefore could basically provide
a measure to assess the ability of the chosen feature space to represent the stated
hierarchy of classes given the hierarchy is appropriate to the classification problem
at all. This would be especially not the case, if e.g. the respective superclasses were
more difficult to be separated from each other than arbitrary mixtures of classes.

6.3.3 Specification of Hierarchies by Sets of Binary Hierar-

chies

Another property of sets of HNDs seems noteworthy: While one HND is possibly
related to many hierarchies of classes, note that a set of HNDs could possibly imply
a smaller range of hierarchies of classes or even define a single one as the HNDs
differ sufficiently. According to Definition 6.7 one could state a hierarchy of classes
to be implied by a set of binary hierarchies of classes, if and only if it is more general
than or equal to every of the binary hierarchies of classes (where in case of equality
the set would contain only one binary hierarchy of classes) and there is no other
hierarchy of classes that fulfills this condition. More formally:

{Hbin1
, . . . ,Hbinn

} ≡ H : ⇐⇒

∀ i ∈ {1, . . . , n} : Hbini
� H

∧ ∀K : Hbini
� K∀ i ∈ {1, . . . , n} ⇒ K = H.

Obviously, any hierarchy of classes could therefore be completely defined by at most
two binary hierarchies of classes, both being degenerated to a list by picking different
members first out of any commonly occurring sub-hierarchy of classes. However, for
a hierarchy of classes being sufficiently general there will be far more than two binary
hierarchies of classes representing the original hierarchy of classes and nevertheless
differing from each other in a degree that justifies building an ensemble of them.

This reasoning justifies building ensembles of HNDs again and from another
point of view: An EHND built of a sufficient number of HNDs will define the
hierarchy used for building a single HND more exactly than any single HND (given
the hierarchy is not binary itself).

6.3.4 Summary

General reasons why to build ensembles of classifiers and requirements to build
good ensembles of classifiers where given in chapter 3. In chapter 4 it was shown
that nested dichotomies are a paragon of good ensemble members. This holds still
true for hierarchically nested dichotomies: Although space of possible hierarchically
nested dichotomies is restricted in comparison to the space of possible general nested
dichotomies it is still manifold.
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Moreover, while a single HND will usually describe the given hierarchy only
poorly, a set of several HNDs can possibly define the given hierarchy completely.

It is, however, essential to define a proper hierarchy of classes. If the hierarchy
describes the relation between classes well, the space of possible HNDs will contain
a more accurate subset of general NDs. Unless the hierarchy is too restrictive the
respective subset of NDs will still contain diverse HNDs. But on the other hand an
improper hierarchy will merely correlate the errors of according HNDs instead of
improving the accuracy.

6.4 Related Work

Since nested dichotomies are a standard statistical technique for tackling with multi-
class problems there unsurprisingly have emerged some ideas in the scientific com-
munity similar to HNDs in selecting proper nested dichotomies with respect to the
structure of data. However, we are neither aware of approaches using a priori in-
formation concerning the structure of classes nor have we found other approaches
building ensembles of nested dichotomies – which is recommendable even in case a
selection of proper nested dichotomies has been done (unless one single system of
nested dichotomies is to represent the structure of classes perfectly).

A simple adaption of nested dichotomies to apply support vector machines to
multi-class problems was recently proposed by Vural and Dy [148]. They use a
single system of nested dichotomies and compare its performance against one ver-
sus others and all versus all, for the testing of the latter using both the max wins
strategy [68] and the decision directed acyclic graph (DAGSVM) [124]. The system
of nested dichotomies is apparently not understood by Vural and Dy as a proba-
bilistic framework, but as a binary decision tree. So no class probability estimates
are derived nor used for weighting the decisions in deeper levels of the tree.

However, the point in their work we want to consider is how they propose to
derive the successive partitions of the set of classes into nested dichotomies. Three
methods are suggested:

1. k-means based division: Each class is represented with its corresponding mean
(µi). The means are grouped into two, using the k-means algorithm.

2. spherical shells : The classes are grouped into two with respect to the total
mean M of data points: The classes with µi < M are grouped as the negative
class, and the others as the positive class.

3. balanced subsets : The data is divided into two subsets with minimum differ-
ence in the number of the instances in the two subsets.

The third method may be useful if the speed of the process of dividing the data
into subsets is of importance. Is seems to be of absolutely no use for deriving a
hierarchy of classes that makes sense. The second method will not separate more
related classes from each other before less related ones are separated – but only if
the relations are organized spherically with respect to the origin, which seems to
be quite an unnatural assumption. The idea to use a clustering algorithm after all
is promising. However, k-means [104] (the authors actually cite a precursor of k-
means, [64], which is less efficient, but essentially the same) shows certain drawbacks
which are obviously not widely acknowledged. Despite the fact it is used in many
applications, it is not at all convenient in all those applications.

• First of all the parameter k, that is the number of clusters, is to be set in
advance. In our case it will always be 2. If the real number of clusters does
not equal k, the results obtained from k-means will be rather poor in many
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(a) (b)

(c) (d)

Figure 6.7: k-means can find four stable separations of four clusters into two.
For a k smaller than the real number of clusters, the result of k-means is rather indeterminate.
In theory, there are four stable results for finding two clusters for given four clusters, given the
clusters are more or less equally distant from each other (except the diagonals) which is a reasonable
assumption for a classification problem. (a) and (b) each resemble a global optimum, (c) and (d)
a relatively stable local optimum, respectively, for the clustering.

(a) (b)

Figure 6.8: k-means finds always k clusters preferring equal extensions of clusters.

(a) k-means will always find k clusters even if there are none. In this case one big cluster is
divided into two. The separation will make absolutely no sense for a classification task.

(b) For k = 2 and two clusters of very different size being close to each other, the bigger one
will be split asunder by k-means and one part will be merged with the smaller cluster in
order to find a stable separation. This split will be very unfavorable for any classification
task.
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cases, dividing several clusters, or at least the result will be indeterminate.
(Of course the result of k-means is always indeterminate since it is a technique
of local optimization. But in the discussed case the global optimum can be
also indeterminate. See Figure 6.7 for an illustration.)

• Furthermore k-means will always find k clusters, even if there are non at all
or the data are clustered in one big cluster without reasonable discrimination
lines. This is illustrated in Figure 6.8 (a).

• Finally, if there actually are two clusters not too far from each other but one
being much bigger than the other, k-means will usually divide the big one and
merge one part with the small cluster in order to find a stable separation. See
Figure 6.8 (b) for an illustration of this problem.

The reasons demonstrated so far suffice to show that using k-means for deriving
a hierarchy of classes in an arbitrary classification task seems generally not to be a
good idea. However, even not being aware of these drawbacks, one will be bound
to concede that a clear separation in all dimensions of the feature space is not at
all required for an arbitrary classifier. Usually a separation in only one dimension
will suffice. Unfortunately such separations will not be detectable for k-means in
general.

Therefore the method proposed already four years earlier by Kumar et al. [96]
seems to be more elaborate although it is a very specialized proposal for a cer-
tain dataset. However, the proposed method is not specialized with respect to this
dataset. It is based on covariance within and between classes and uses simulated
annealing to derive a low entropy of the class partitioning. There may possibly
be less complicated methods since at first sight a sort of subspace clustering might
suffice to derive appropriate class hierarchies. Several profound algorithms for sub-
space clustering or feature selection were proposed in the recent years (see e.g. [1],
[2], [3], [34], [73], [89], [94], and [17]). Combining advanced clustering methods like
those with classifiers like our proposed EHNDs could be a remunerative topic for
further research.

Although the method of partitioning proposed by Kumar et al. is quite sophis-
ticated, both of the cited methods choose a single system of nested dichotomies
after all. Even if the selection of a single system of nested dichotomies is based
on reasonable decisions, this will put a bias on the resulting classifier which often
will be stronger than it needs to be – resulting in a high variance component of the
classification error. This can be reduced building an ensemble of diverse systems of
nested dichotomies.

Note that both methods derive a hierarchy ad hoc based on the respective train-
ing data. So neither of both is addressing the issue of incorporating domain knowl-
edge.

6.5 Conclusion

We proposed a method to binarize polytomous classification problems based on
systems of nested dichotomies while incorporating domain knowledge concerning
the hierarchical structure of classes. Therefore we introduced constraints to define
a subset of binary trees that are valid binarizations of arbitrary hierarchies and
developed a method to derive nested dichotomies according to those constraints
given a previously defined hierarchy of classes. Nested dichotomies that are built
according to this method are called hierarchically nested dichotomies.

For nested dichotomies a recently proposed ensemble method, ENDs [66], was
reviewed in chapter 4. Since nested dichotomies impose a distinct order on classes
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a single system of nested dichotomies exhibits a severe bias. The space of possible
nested dichotomies is very large and several systems of nested dichotomies thus will
be very diverse. Therefore, by building ensembles the error variance is effectively
reduced.

Obviously, the set of hierarchically nested dichotomies is a subset of nested
dichotomies. Thus the space of possible hierarchically nested dichotomies is consid-
erably restricted with respect to the space of possible nested dichotomies. Neverthe-
less it grows by an over-exponential rate for an increasing number of classes. Since
the members of an arbitrary set of hierarchically nested dichotomies can there-
fore still be considered to be diverse, building ensembles of hierarchically nested
dichotomies can reasonably be expected to perform well. A set of HNDs will usu-
ally describe the given hierarchy more exactly than any single member of the set.
Thus the averaged bias of the ensemble members will approximate the bias that
was desired by defining the hierarchy.

Constraining nested dichotomies by a hierarchy can be considered to affect di-
rectly the accuracy of the nested dichotomy as a single classifier system. If the
defined hierarchy describes the real hierarchy well and as it is reflected in feature
space, the bias of a hierarchically nested dichotomy will be less erroneous than
the bias of an arbitrarily nested dichotomy. Otherwise, however, the errors of sev-
eral hierarchically nested dichotomies defined according to the identical erroneous
hierarchy will be stronger correlated than the errors of several arbitrarily nested di-
chotomies. This consideration motivates us to expect the trade-off in performance
between ENDs and EHNDs ceteris paribus to be of value for evaluating the quality
of feature spaces. Note, however, that a well defined hierarchy that is completely
detectable in the feature space might be of no use, if EHNDs are employing a
rather weak learner as base learner which is not able to take advantage of the good
representation.

It might occur that classes and superclasses at different levels of a hierarchical
classification problem are best separated by different features, different methods,
or the same method but in different parameterization. Let us therefore note that
our method provides the ability to make use of different features, different methods,
and different parameterization for each level of the given hierarchy.



58 CHAPTER 6. HIERARCHICAL CLASSIFICATION



Chapter 7

Evaluation

For evaluation of the proposed method of ensembles of hierarchically nested di-
chotomies, EHNDs were implemented in Java and incorporated in Weka [151]. This
allows a direct comparison to ENDs which are also available as a classifier within the
Weka-framework. Furthermore there is a broad range of classification methods avail-
able in the same framework. Thus any of them can easily be used as base-learners
and competitors.

7.1 Prediction Performance Measures

The performance of any prediction algorithm is completely given in the confusion
matrix. The confusion matrix for n classes is a matrix Z ∈ N

n×n, Z = (zij)i∈N,j∈N ,
where zij represents the number of times the input is predicted to be in class j
while belonging to class i and N = {1, . . . , n} is the set of indices of classes. For
two classes, the confusion matrix is easily readable. It counts the occurrences of
correct and false predictions for both classes, resulting in four numbers: TP (true
positive) is the number of decisions for class 1 for an instance truly belonging to
class 1. TN (true negative) is the number of decisions for class −1 for an instance
truly belonging to class −1 (i.e. not belonging to class 1). FN (false negative) is
the number of decisions for class −1 for an instance that would have been correctly
classified as class 1. FP (false positive) is the number of decisions for class 1
for an instance that would have been correctly classified as class −1. The sum
TP + TN + FP + FN is the number of instances.

Dealing with polytomous classification problems the situation is more complex
since the four numbers defined above will then be defined for each single class,
treating all other classes as the negative class. The performance can still be read
out of the confusion matrix, but it will be less convenient. Thus one uses other
performance measures for multi-class problems.

However, a reasonable measurement of performance should not omit any of the
four numbers, TP, TN, FP, or FN. Otherwise information will be lost. On the
other hand one wishes to make the performance measure conveniently readable and
comparable. Thus one can use percentages and average the values for several classes
(e.g. the superclasses of some hierarchically structured problem), or for all of them.
Often ratios of the numbers are used. For a profound overview we refer to [13,
chapter 6.6 – 6.7], [14], and [147].

For evaluation of EHNDs we choose the prediction performance measures:

• true positive rate,

• false positive rate,

59
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• positive predicted value,

• and F1-measure.

The remainder of the current section will shortly describe these performance mea-
sures.

7.1.1 True Positive Rate

The true positive rate is defined as:

TPR =
TP

TP + FN
. (7.1)

The true positive rate is a measure for positive coverage and is also known as
sensitivity or recall. For a single class it equals the number of correctly classified
members of this class divided by the overall number of members of this class:

TPRi =
TP i

TP i + FN i
, (7.2)

where

TP i = zii

is the number TP for class i and

FN i =
∑

j∈N
j 6=i

zij

is the number FN for class i.
As an average over all classes the true positive rate is generally known as accu-

racy:

Q =

∑n
i=1 TPRi

n
, (7.3)

where n is the number of classes.
We will also use averages over certain subsets I ⊂ N of classes (e.g. superclasses).

These are defined as follows:

TPRI =

∑

i∈I

(

TPRi ·
∑

j∈N zij

)

∑

(i,j)∈I×N zij
. (7.4)

7.1.2 False Positive Rate

The false positive rate is defined as:

FPR =
FP

FP + TN
. (7.5)

The false positive rate tells the percentage of instances not belonging to a class but
falsely classified as that class. It is also known as false alarm rate. With respect to
a single class i it equals the number of instances of other classes classified as this
class divided by the overall number of instances belonging not to this class:

FPRi =
FP i

FP i + TN i
, (7.6)
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where
FP i =

∑

j∈N
j 6=i

zji

is the number FP for class i and

TN i =
∑

(k,j)∈N×N
k 6=i∧j 6=i

zkj

is the number TN for class i.
An average of FPRI over a certain subset I ⊂ N of classes is defined by:

FPRI =

∑

i∈I

(

FPRi ·
∑

j∈N zij

)

∑

(i,j)∈I×N zij
. (7.7)

Thereby the overall false positive rate is given by:

FPRN =

∑

i∈N

(

FPRi ·
∑

j∈N zij

)

∑

(i,j)∈N×N zij
. (7.8)

7.1.3 Positive Predicted Value

The positive predicted value is defined as:

PPV =
TP

TP + FP
. (7.9)

The positive predicted value is a measure for the rate of instances correctly classified
as a certain class out of the overall number of instances classified as that class. It
is also known as precision or specificity. For a single class i it equals the number of
instances correctly classified to belong to class i divided by the overall number of
instances classified to belong to class i:

PPV i =
TP i

TP i + FP i
, (7.10)

where TP i and FP i are defined as above.
The average of PPV I over a subset I ⊂ N of classes is defined by:

PPV I =

∑

i∈I

(

PPV i ·
∑

j∈N zij

)

∑

(i,j)∈I×N zij
. (7.11)

Thereby the overall positive predicted value is given by:

PPV N =

∑

i∈N

(

PPV i ·
∑

j∈N zij

)

∑

(i,j)∈N×N zij
. (7.12)

7.1.4 F1 Measure

The F measure [147] is a combined measure that assesses the tradeoff between
precision and recall as a weighted harmonic mean:

Fβ =
(β2 + 1)PPV · TPR

β2PPV + TPR
. (7.13)
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Usually one uses β = 1 resulting in the balanced F1 measure:

F1 =
2 · PPV · TPR

PPV + TPR
. (7.14)

The F1 measure for single classes and subsets of classes is defined straightforward
by using the respective values of PPV and TPR. The F1 measure will often be used,
if one needs to optimize a single measure, that balances PPV and TPR. However,
we will provide the F1 measure in addition to these two.

7.1.5 Summary

TPR and FPR together cover all values of TP , TN , FP , and FN . These measures
are used to derive the so called receiver operating characteristics (ROC) curves
which reflect the tradeoff between true positive rate and false positive rate for
different thresholds. Furthermore the specificity or precision of a model is described
by the PPV while the F1 measure yields the tradeoff between PPV and TPR as a
single measure which could be optimized.

7.2 Data

A first evaluation of our method was done using the synthetic data given in Figure
7.1. These data were already presented in chapter 6 to illustrate the notion of a
hierarchy of classes (see section 6.1). These data consist of 16 different Gaussian
distributions clearly separated into four super-clusters, where the means of four
Gaussian distributions are nearby each other but far from the means of the re-
spective other 12 Gaussian distributions. Each distribution consists of 50 points in
two-dimensional Euclidean space. The subgroups within each group are not clearly
separable. Thus here is given a paragon of hierarchically structured classes and
one can expect ensembles of hierarchically nested dichotomies to perform very well
given the proper hierarchy.

7.3 Results

Not surprisingly, EHNDs performed very well on the 16 class problem with a pro-
nounced hierarchical structure. We compared EHNDs to ENDs and SVMs. SVMs
were also the base learners for ENDs and EHNDs. We used the sequential minimal
optimization algorithm (SMO) by Platt [122], [123] with improvements by Keerthi
et al. [90], as it is implemented in Weka. SVMs are fitted to the multi-class problem
by pairwise coupling according to [81] (see chapter 2, section 2.2.2.3). The SMO in
Weka provides class probability estimations on demand by fitting logistic regression
models [97] to the outputs of the support vector machine. This was also used to ob-
tain the conditioned class probability estimates in NDs and HNDs. For ENDs and
EHNDs we used 20 NDs and HNDs to build ensembles. ENDs performed better
than SMO. EHNDs outperformed both of them. The accuracy, that is the per-
centage of correctly classified instances (Q), in a 10-fold stratified cross-validation
was for SMO: 78.25%, for ENDs: 82.375%, and for EHNDs: 94.75%. A detailed
comparison with respect to the superclasses is given in Table 7.1.

To investigate the impact of using a hierarchy that is not reflected by the fea-
tures describing the data we trained another EHND using the hierarchy as defined
by: {{A1, B1, C1, D1}, {A2, B2, C2, D2}, {A3, B3, C3, D3}, {A4, B4, C4,
D4}}. This imposes a strong bias on the classifier to prefer inconvenient decisions.
All classes are to be discerned from each other before the actual superclasses are
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Figure 7.1: Hierarchically structured classes.
These data are composed of 16 classes, that are organized in four superclasses, A, B, C, and D,
respectively, each containing 4 base classes.

Group Method Training Cross-validation
TPR FPR PPV F1 TPR FPR PPV F1

A SVM 0.835 0.011 0.8744 0.8542 0.5 0.0333 undef undef
END 0.78 0.0147 0.8559 0.8162 0.775 0.015 0.8457 0.8088
EHND 0.92 0.0053 0.9196 0.9198 0.92 0.0053 0.92 0.92

B SVM 0.92 0.0053 0.9194 0.9197 0.75 0.0167 undef undef
END 0.695 0.0203 undef undef 0.84 0.0107 0.8433 0.8417
EHND 0.93 0.0047 0.9302 0.9301 0.93 0.0047 0.9294 0.9297

C SVM 0.955 0.003 0.956 0.9555 0.895 0.007 0.8946 0.8948
END 0.91 0.006 0.9183 0.9141 0.76 0.016 0.7903 0.7749
EHND 0.96 0.0027 0.96 0.96 0.955 0.003 0.9553 0.9551

D SVM 0.985 0.001 0.9851 0.985 0.985 0.001 0.9851 0.985
END 0.93 0.0047 0.9323 0.9311 0.92 0.0053 0.9217 0.9208
EHND 0.985 0.001 0.9851 0.985 0.985 0.001 0.9851 0.985

Total SVM 0.9238 0.0051 0.9337 0.9287 0.7825 0.0145 undef undef
END 0.8288 0.0114 undef undef 0.8238 0.0117 0.8503 0.8368
EHND 0.9488 0.0034 0.9487 0.9487 0.9475 0.0035 0.9474 0.9475

Table 7.1: Evaluation of SMO, ENDs, and EHNDs on the data given in Figure 7.1.
All methods were implemented in Java within the Weka framework. SMO was also the base-
learner for ENDs and EHNDs, always using the same (standard) parameterization, and fitting
logistic regression models to the outputs of the SVM to obtain class probability estimates. ENDs
and EHNDs were built using 20 members of the ensembles. The hierarchy was defined as {{A1,
A2, A3, A4}, {B1, B2, B3, B4}, {C1, C2, C3, C4}, {D1, D2, D3, D4}}.
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Figure 7.2: Visualization of the confusion matrices for the cross-validation of SVMs,
ENDs, and EHNDs over the data given in Figure 7.1.

(a) Confusion of SVMs (pairwise coupling).

(b) Confusion of ENDs.

(c) Confusion of EHNDs.

The darkness is normalized per row by the number of instances for a class.
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Group Training Cross-validation
TPR FPR PPV F1 TPR FPR PPV F1

A 0.25 0.05 undef undef 0.25 0.05 undef undef

B 0.705 0.0197 undef undef 0.465 0.036 undef undef

C 0.25 0.05 undef undef 0.25 0.05 undef undef

D 0.25 0.05 undef undef 0.275 0.048 undef undef

Total 0.3638 0.0424 undef undef 0.31 0.046 undef undef

Table 7.2: Impact of an improper hierarchy on performance of EHNDs.
EHNDs were used as above (Table 7.1), but the hierarchy was defined as {{A1, B1, C1, D1}, {A2,
B2, C2, D2}, {A3, B3, C3, D3}, {A4, B4, C4, D4}}.
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Figure 7.3: Impact of an improper hierarchy on confusion of EHNDs.
Although use of an improper hierarchy has a strong impact on performance of EHNDs, here the
actual superclasses are not confused.

separated. The accuracy decreases dramatically (see Table 7.2), although as a mat-
ter of fact the actual superclasses are not confused (see Figure 7.3). After all, they
are as easy separable as before.

7.4 Discussion

The pronounced hierarchical structure that is completely reflected in the features
may lead to the observed strong improvement of EHNDs in comparison to both,
ENDs and SVMs. Although neither ENDs nor SVMs do confuse superclasses in this
example, as the visualization of the confusion matrices shows (Figure 7.2), they will
have to find more difficult decision boundaries: Some NDs could be to separate
groups of classes from each other, where the members of one group could be spread
through all superclasses. The HNDs are prevented from doing so. Pairwise coupling
SVMs on the other hand could collect many false votes for classes trying to classify
classes they were not trained for, but which are very similar to the respective class.
However, in both scenarios the decision between superclasses remains quite clear.

Our second experiment shows the dramatical impact of an improper hierarchy
on HNDs. Here the HNDs are hold to find difficult decision boundaries. Since
NDs can be bound to difficult decision boundaries on a high level only accidentally,
such an erroneous bias of a single ND can be compensated for by other NDs in an
ensemble. EHNDs will not be able to do so, if all ensemble members are bound to
the same misleading hierarchy. Thus in this case there will be a high correlation of
errors.
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7.5 Conclusion

The evaluation of EHNDs on synthetic data exhibiting a hierarchical structure of
classes confirmed the claim of their superiority over methods which do not incor-
porate information concerning the structure of data. However, since the data are
synthetic the hierarchical structure was constructed quite pronounced and it was
completely reflected by the feature space of the data. For applications of EHNDs
to natural data the task remains first to find a feature space representing the hi-
erarchical structure well. But even in case of success for this representation the
hierarchy can not be expected to be that pronounced.

It was demonstrated that using improper hierarchies for building HNDs dra-
matically decreases accuracy of the ensemble of HNDs as well. This observation
emphasizes even more the importance of finding a feature space reflecting the as-
sumed hierarchy for use by EHNDs.
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Chapter 8

Application to Protein

Classification

We are now going to describe possible biological applications for EHNDs. While
hierarchies are ubiquitous in biology, most hierarchical-like structured data are not
available as pure hierarchy. This will be discussed in the first section. We chose
structural classification of proteins based on primary and secondary sequence (also
known as ‘fold recognition’) as an application to evaluate EHNDs in comparison
to other methods. The tasks involved with fold recognition and some related ap-
proaches and competing methods will briefly be introduced in the second section,
the evaluation is reported in the third one. Finally we will state some conclusions
related to this field of application.

8.1 Hierarchically Structured Biological Data

8.1.1 Sequence Similarity

First of all, sequences of DNA, RNA, or amino acids can be ordered by means of
sequence comparison. Sequences more similar to one another are treated as being
more closely related than sequences showing more dissimilarities since dissimilarities
are based on mutations and the accumulation of mutations is mainly a matter of
time of divergence. Thus the common ancestor of two sequences is most likely to be
the older the more dissimilar the sequences are and trees covering the evolutionary
relationships between molecular entities like proteins usually parallel phylogenetic
trees of the respective organisms (see Figure 8.1). However, the measure of sim-
ilarity of sequences is anything but trivial. A great deal of research is currently
aiming at suitable definitions of sequence similarity. In recent years there were
several redefinitions of sequence similarity proposed e.g. by means of algorithms
like PSI-BLAST [8], Hidden Markow Models [16], or profile-profile alignment [133].
See for more general overviews e.g. [78], or [150] regarding the classical approach,
or [59] emphasizing the probabilistic approach to sequence analysis which makes
perfectly sense since the evolutionary forces acting on biological sequences are also
thought of to work stochastically. Partially depending on function and probably on
interaction with other proteins [118] proteins and protein families differ markedly
in their evolutionary conservation. So stating evolutionary relationships based on
sequence similarity will often be quite ambiguous, as we have stated above.

69
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Figure 8.1: Evolutionary tree of globins.
This evolutionary tree is showing relations between several globins throughout several kingdoms,
starting from the most primitive oxygen-binding proteins in plants, leghemoglobins. Sequence
comparisons have revealed that evolution of the globin proteins parallels the evolution of verte-
brates. Major junctions occurred with the divergence of myoglobin from hemoglobin and the later
divergence of hemoglobin into the α and β subunits. The Figure is taken from [103, Figure 3-12]
which is an adaption from [44].

8.1.2 Functional Classification

Other hierarchies of genes or proteins are based on their function (e.g. Gene Ontol-
ogy [142], [143], [144], Enzyme Classification [113]). It is commonly accepted that
the function of genes and proteins is based on their sequence and also set out to
evolutionary forces. Nevertheless, the general relation of biological sequences and
biological functions, i.e., a function f : biological sequences → biological functions ,
that maps a biological sequence to its biological function, is not yet determined.
The vision of defining this relation is a main motivation for research in the fields of
bioinformatics (see [15] for an overview).

Unfortunately, these hierarchical relationships of protein functions are usually
not pure hierarchies in the notion of Definition 6.3. Gene Ontology resembles a
directed acyclic graph. Furthermore one protein can have several functions thus
belonging to several functional classes. Therefore the respective hierarchy can not
be represented as a tree nor can a classification scheme be applied that assumes
classes to be mutually exclusive.

8.1.3 Structural Classification of Proteins

Molecules can also be sorted with respect to their structure. By means of such
sorting pure hierarchies are provided, even though different aspects of structural
properties might lead to different hierarchies. Note that usually sequence similarity
is a criterion for building samples at deeper levels in such hierarchies. Further-
more according to common opinion the function of a protein is closely related to its
structure as structure is related to sequence. Nevertheless the number of structural
motifs seems to be quite limited and certain structures are repeatedly observed
among proteins with very different and apparently unrelated sequences of amino
acids. So current estimates suggest that there are about 1000 unique protein folds
[37], [76], and [152]. Two forces might have played a role in the limitation of actual
variety of folds: divergent evolution of protein function (since all folds are derived
from a relatively small group of shared common ancestors) and convergent evolu-
tion of protein structure (since certain folds are biophysically much more favored
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Class Folds Superfamilies Families
All alpha proteins 179 299 480
All beta proteins 126 248 462
Alpha and beta proteins (α/β) 121 199 542
Alpha and beta proteins (α + β) 234 349 567
Multi-domain proteins 38 38 53
Membrane and cell surface proteins 36 66 73
Small proteins 66 95 150
Total 800 1294 2327

Table 8.1: SCOP Classification Statistics.
SCOP: Structural Classification of Proteins. 1.65 release 20619 PDB Entries (1 August 2003).
54745 Domains. 1 Literature Reference (excluding nucleic acids and theoretical models)
(Statistics obtained from http://scop.berkeley.edu/count.html.)

and thus may have been created independently in multiple cases [75] – as e.g. mor-
phologously analogous structures often occur in relatively unrelated species). These
relations between fold space and protein evolution are also discussed in [135]. (For
a gentle introduction to the basics of protein structure see also [22]. Generally we
used also [60], [98], [25], and [26].)

One of the first structural classifications of proteins was a flat hierarchy based
on the predominant secondary structure element and consisted of four groups: all α
(containing proteins based almost entirely on α-helical structure), all β (the mem-
bers being based on β-sheet), α/β, and α + β (both being based on a mixture of
α-helices and β-sheets, where α-helix and β-sheet motifs are interwoven in α/β
structures, but not in α + β structures [99]. This classification scheme has been
extended and adjusted later on, resulting in the most prominent hierarchical struc-
tural classification schemes for proteins: SCOP and CATH. The third of the major
structural classification schemes of proteins, FSSP [83], is based on somewhat dif-
ferent principles not clearly discriminating folds or superfamilies and will not be
considered in the remainder. For a systematic comparison of SCOP, CATH, and
FSSP see [79].

8.1.3.1 The SCOP-Database

The SCOP-database (Structural Classification Of Proteins [111], [102], [10]) pro-
vides a four level hierarchy. The top level classification is the class, mainly with
respect to the secondary structure composition of the protein. The main classes
are the four classes already proposed by Levitt and Chothia in 1976 (all α, all
β, α/β, and α + β, as described above) among other less important classes like
multi-domain and small proteins. Each class consists of several folds, the folds of
superfamilies, these of families. Families consist of single domains which exhibit a
distinct sequence similarity thus being evolutionarily closely related. E.g. all the
proteins given in Figure 8.1 considered as being evolutionarily related belong to the
family globins, being part of the superfamily globin-like, the fold globin-like, and are
subsumed under the class all-alpha at top-level of the SCOP-hierarchy. An overview
concerning the most important classes and their content of folds, superfamilies, and
families is given in Table 8.1.

Proteins in SCOP are mainly manually classified by visual judgment. While
clustering of proteins with similar sequences, or very similar structures and functions
into families and superfamilies is more or less indisputable, the choice for classes
is somewhat arbitrary. There are other classifications possible. Decision for a
SCOP class is made by visual inspection. Superfamilies group families together
which are believed to share a common evolutionary origin. Proteins sharing a
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common fold exhibit structural similarities due to favorable packing arrangements
and chain topologies, although they may sometimes also be distantly evolutionarily
linked as structure is much more highly conserved than sequence in distantly related
proteins: Proteins that have diverged beyond detectable sequence similarity have
often retained the architecture and topology of their ancestral fold nevertheless. For
a more detailed discussion of the SCOP database and evolution of protein structures
we refer to [127].

Related to SCOP as a connection to PDB (Protein Data Bank [20]) is the
ASTRAL compendium ([29], [32], [31]). Basically ASTRAL provides a linkage of
protein structures and their associated sequences as this linkage is not always easily
to be derived from original PDB files. So ASTRAL provides subsets of proteins
featured both by PDB and SCOP as a mapping of PDB contained proteins to
SCOP, preferably also based on PDB entries providing high resolution and regularity
of crystallographically determined protein structures. The subsets are defined by
maximal sequence similarity thus allowing to consider sets of proteins excluding
homologues to a certain degree of sequence identity. This is an important issue to
properly evaluate methods based on alignments.

8.1.3.2 The CATH-Database

The CATH-database [115], [121] (see also [116]) is based on principles similar to
those of SCOP, comprising four major levels: Class, Architecture, Topology, and
Homologous Superfamily. The name CATH is an acronym for these levels, and
these four levels correspond the three major SCOP levels. On class level CATH
does not distinguish α/β from α + β. A fourth class collects domains exhibiting
only few secondary structures. Other classes are less important (see Table 8.2).
Topology level corresponds to Fold level of SCOP. Between Class and Topology,
on the level of Architecture proteins are clustered manually with respect to similar
orientation of secondary structures in space, regardless of their connectivity. Thus
proteins sharing the numbers C-A-T exhibit the same fold. See Figure 8.2 for an
illustration of the first three levels of CATH.

Homologous superfamilies, the fourth level, groups proteins according to whether
there is evidence based on sequence, structure, or function supporting an evolu-
tionary relationship. Within homologous superfamilies, proteins are clustered into
sequence families based on several levels of sequence identity. CATH provides there-
fore three levels which are not separated in family level of SCOP. Statistics regarding
the current version is presented in Table 8.2.

In difference from SCOP CATH does incorporate some automation in classifying
protein structures. Its hierarchical classification might therefore be more suitable
to machine learning methods to be learned.

8.1.3.3 Summary

SCOP and CATH are both well established hierarchies of structural classification
of proteins. There are datasets used for evaluation of methods to identify the fold
of a protein based on either of SCOP or CATH. We will also refer to a dataset with
respect to either of both databases. But beforehand we will shortly survey what is
implied in the task of identifying the fold of a protein.

8.2 Fold Recognition

The identification of the fold of a protein is to be seen within the wider horizon of
prediction of the three-dimensional structure of a protein from its one-dimensional
sequence of amino acids. Ostensible fold recognition is a classification problem and
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Figure 8.2: Illustration of the CATH hierarchy.
Illustration of the CATH hierarchy as provided by
http://www.biochem.ucl.ac.uk/bsm/cath new/images/cathhier.gif.

C A T H S N I D
Mainly Alpha 5 227 428 948 1713 3946 10155
Mainly Beta 19 139 292 951 2344 5011 14259
Alpha Beta 12 368 648 2010 3631 8639 23025
Few Secondary Structures 1 86 91 114 225 378 952
Multi-domain chains 1 1053 1057 1071 2186 5801 12471
Preliminary single domain 1 371 374 422 479 789 1663
assignments
Multi-domain domains 2 31 31 49 67 139 287
CATH-35 Sequence families 1 997 997 997 1108 2154 3431
Fragments from multi-chain 1 28 28 30 33 56 106
domains

Table 8.2: CATH Classification Statistics.
CATH 2.5.1 release (28 January 2004).
(Statistics obtained from http://www.biochem.ucl.ac.uk/bsm/cath/releases.html.)
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thus it is often treated by classical means of machine learning. But moreover, ‘fold
recognition’ is also related to a certain method of modeling the tertiary structure of
a protein given its primary structure. Generally there are three main methods for
assignment of tertiary structure to a protein of unknown tertiary structure, referred
to as ‘comparative modeling ’, ‘ab initio’, and ‘fold recognition’ (see for an overview
also [24]). Comparative modeling (also known as ‘homology modeling ’) is a method
to be used preferably whenever there is a clear relationship between the sequence
of a protein of unknown structure (also referred to as ‘target ’) to the sequence of
a protein of known structure (‘template’) [93]. Ab initio methods (or nowadays
‘novel fold’ or ‘new fold ’, where ab initio is a subset of methods relying only on
physical principles and not on any existing structure on sequence data) are applied
to proteins where no protein fold on sequences of even low similarity is known
[36]. Fold recognition is the intermediate method to be preferably employed when
a template of known fold can be identified in the absence of recognizable sequence
similarity. Of course, the threshold between fold recognition and homology modeling
based on sequence comparison is constantly changed due to advances in sequence
analysis [72].

The template for fold recognition methods is often considered to be distantly
related while generally two proteins will be assumed to be related, if a sequence
similarity larger than random is found: sequence similarity implies homology, but
not vice versa. But taking into account sequence similarity as the only argument
for homology can also be misleading, since the so called ‘twilight zone’ of sequence
similarity corresponds to about 25% of identical amino acids in an optimal alignment
between protein pairs. This is why fold recognition earns relevancy even though
homology modeling reaches out to regions of even far sequence similarity. Detecting
the distant homologies by means beyond of pure sequence comparison relies on the
chance that some aspects of function, like the arrangement of active site residues,
are conserved although the sequence similarity is undetectable. Thus by means
of fold recognition also the prediction of some aspects of protein function might
become possible.

However, the first step towards fold recognition in this notion of a modeling
method is the correct assignment of a known fold to a protein of unknown structure.
This first step is often also referred to as ‘fold recognition’ itself for suggesting
reasons. In the remainder we refer to ‘fold recognition’ in this restricted notion as
a classification problem.

There are basically two approaches towards fold recognition. Godzik [72] dis-
cerns these as biological versus physical. Roughly these categories also could be
referred to with respect to the methodology as alignment methods versus machine
learning methods.

8.2.1 Alignment Methods

The biologist’s approach is to explain the nature in terms of patterns of evolution.
These patterns are especially found in sequences of nucleic acids or amino acids.
Thus comparison of sequences by alignment methods is prima facie the preferable
choice of means to find similar and therefore related sequences. Methods based on
alignments of sequences are also employed to detect the presumably correct fold of
a target sequence. Since sequence similarity for typical targets of fold recognition
is quite low, the respective methods are enriched by complex scores to take into
account e.g. profile-profile alignments or alignments of secondary structure elements.
Profile-profile alignments are e.g. used by [86], [133], or [155]. Taking into account
structural information to improve fold recognition was already considered in [5],
[131], and [62], and recently in [108]. Though profile-profile alignments already
are highly correlated with similarities between secondary structure elements [155],
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recently methods were proposed combining both approaches explicitly, see [107],
[21] (also taking into account enzyme classification), and [71].

Four alignment based methods were taken into account for comparison with our
method, despite the fact that alignment based methods do generally perform better
in fold recognition than machine learning methods:

1. GenTHREADER. GenTHREADER is a simple threading approach intro-
duced by Jones [86]. It is based on an algorithm making use of a sequence
profile and analyses of alignments by using energy potentials.

2. PDB-BLAST. Rychlewski et al. [133] introduced a two-step PDB-BLAST
protocol which uses PSI-BLAST [8] to build a sequence profile for a target
based on the non-redundant database of known sequences. The generated
profile is then aligned to all target sequences using BLAST [7].

3. MANIFOLD. MANIFOLD is based on a combination of secondary structure
alignment, PDB-BLAST and enzyme code similarity and was introduced by
Bindewald et al. [21]. The three contributions to the method are weighted by
training a two-layer neural net.

4. Alignment combination. Gewehr et al. [71] combine profile-profile align-
ments using a log average score in combination with secondary structure ele-
ment alignment.

As the evaluation of our method in comparison to these methods will show, the
gap between alignment based methods and pure machine learning methods is not
always that big. It heavily depends on the dataset. Machine learning methods are
well able to reach the level of accuracy of alignment based methods in some cases.

8.2.2 Machine Learning Methods

As the ‘biological’ methods of fold recognition – based on homology recognition
– assume that structural similarity results from the distant relation between two
considered proteins, they are tackling the question whether or not a protein se-
quence belongs to a given family of proteins with respect to a specific set of rules
of mutations. As Godzik [72, page 533] states concerning these methods:

The structure was not used directly and entered the picture only by
restricting accepted mutations in different ways at different positions. At
the same time, most proteins fold on their own [. . .], without checking
what the structure of their homologs is in databases but following physical
laws governing their behavior.

This declares perfectly the motivation to pursue other than alignment based meth-
ods that hopefully allow detecting the implied physical laws. According to common
opinion the sequence of amino acids perfectly determines the three dimensional
structure [11], a principle that inspires ab initio methods in protein fold prediction.
In the field of protein fold recognition some methods take also into account the
energy of a fold. Such methods are referred to as threading ([87], [117] – compare
other sources cited by Godzik [72]). Of course, this approach is often combined
with alignment based methods, also in some of the methods cited above.

Energy functions generally must be simplified to be computable. Another pos-
sibility to simplify properties of sequences is extraction of feature vectors. This is
where machine learning can tackle the problem. The physicist seeks a function from
sequence space to (continuous) fold space, while machine learning seeks a function
from feature space to (discretized) fold space, given a function from sequence space
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Figure 8.3: The approximation of the assumed physical function by means of ma-
chine learning.
Machine learning tackles part of the problem of the physical approach: The physicist seeks a
function from sequence space to (continuous) fold space, while machine learning seeks a function
from feature space to (discretized) fold space, given a function from sequence space to feature space.
Machine learning thus performs part of the physical task and hopefully helps approximating the
physical function.

to feature space (Figure 8.3). (There are other machine learning approaches, e.g.
Hidden Markov models, operating directly on sequences, of course. So for example
Raval et al. [126] make use of HMMs for fold recognition.)

The task in applying machine learning to protein fold recognition is on the one
hand to detect feature spaces that describe proteins well with respect to structure.
On the other hand a broad variance of machine learning methods is available, so
the question is which one to use. We will therefore apply our method of EHNDs
in comparison to other methods to test its usefulness. This is suggesting since
hierarchical structures are well defined for proteins, as was described above.

8.2.3 Feature Spaces for Proteins

As Figure 8.3 shows an important step to prepare problems for machine learning
approaches is the representation of the problem in a feature space. Since the fold
depends according to common opinion [11] on the sequence, a promising feature
space should provide as much as possible information concerning the sequence. In
the literature we found basically three approaches to this task which will now be
shortly presented:

8.2.3.1 Composition – Distribution – Transition

The by far best known set of features for protein fold recognition was proposed by
Dubchak et al. [56] and [57] and often used since then not only by Dubchak herself
[53] but also by many other machine learning approaches to the problem. Ding and
Dubchak [53] provided also a training and a test set of proteins and the prepared fea-
tures according to [56] and [57]. Although the thereby provided SCOP-classification
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Property Group 1 Group 2 Group 3

Hydrophobicity Polar: Neutral: Hydrophobic:
{R,K,E,D,Q,N} {G,A,S,T,P,H,Y} {C,V,L,I,M,F,W}

Normalized 0–2.78: 2.95–4.0: 4.43–8.08:
van der Waals volume {G,A,S,C,T,P,D} {N,V,E,Q,I,L} {M,H,K,F,R,Y,W}

Polarity 4.9–6.2: 8.0–9.2: 10.4–13.0:
{L,I,F,W,C,M,V,Y} {P,A,T,G,S} {H,Q,R,K,N,E,D}

Polarizability 0–0.108: 0.128–0.186: 0.219–0.409:
{G,A,S,D,T} {C,P,N,V,E,Q,I,L} {K,M,H,F,R,Y,W}

Table 8.3: Amino acid attributes and the mapping of amino acids onto sets of three
groups.
For each property the set of amino acids is mapped onto a set of three groups as defined above.
The mapping is based on previous publications as stated by [57]: Hydrophobicity: [38], Normalized
van der Waals volume: [61], Polarity: [77], Polarizability: [33].
Table originally provided by [57, Table I].

is not up to date anymore these data are used even by recent publications and pro-
vide therefore good means for comparison of different approaches.

The idea of Dubchak et al. was to describe the properties of a sequence in
three different descriptors called composition, distribution, and transition, based
on groups of amino acids.

Groups For application of descriptors the set of amino acids is mapped onto a
set of groups. The groups used by Ding and Dubchak [53] were hydrophobicity,
normalized van der Waals volume, polarity, and polarizability. The mapping for
these sets of groups is defined by Table 8.3. Of course, the set of amino acids is also
a set of groups (of size 20) as well as the predicted states of secondary structure (as
helix, sheet, and coil).

Descriptors The descriptors can be applied to each of the sets of groups. This
works as follows:

• Composition. The composition describes the percentage of amino acids of
the sequence per group. This results in a number between 0 and 1 for each
group, where the sum is 1.

• Distribution. The distribution consists of five numbers for each group: the
fractions of the entire sequence where the first residue of the respective group
occurred, and where 25%, 50%, 75%, and 100% respectively of those are
contained.

• Transition. The transition provides a number for each pair of groups out of
a given set of groups which is the count of transitions from one group to the
other or vice versa within a given sequence.

Summary For the sets of groups of three members like secondary states or the
groups defined in Table 8.3, the composition descriptor and the transition descriptor
each provide three numbers, the distribution descriptor five times three. Thus for
each of these groups a feature vector of dimensionality 21 is provided. For the single
amino acids only the composition is computed which results in combination with
the length of a sequence also in a feature vector of dimensionality 21. Distribution
and transition for the single amino acids would result in very high dimensional
feature spaces. The combination of the feature vectors provides a feature space of
6 × 21 = 126 dimensions.
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It is often reported and conforms also to our experience that best separation
of structural classes and folds is allowed by the 20 features based on amino acid
composition and the 21 features based on secondary structure.

8.2.3.2 Auto-Correlation Function

For separation of structural classes another feature space is proposed and reported
to perform well by Bu et al. [30]. They propose to represent an amino acid sequence
as feature vector consisting of the values of a so called auto-correlation function.
Therefore the sequence of amino acids is firstly to be transformed into a sequence
of numbers dependent on an arbitrary amino acid index [145]. An amino acid index
provides a number for any amino acid with respect to a certain physicochemical
property. Tomii and Kanehisa [145] collected 402 sets of amino acid indices which
all could possibly be employed for usage in such a transformation of an amino acid
sequence to a sequence of numbers. Resulting is for a sequence (a1, a2, . . . , aN ), ai ∈
aminoacids, a sequence (h1, h2, . . . , hN ), hi ∈ R.

The auto-correlation function proposed by Bu et al. [30] is based on [41] and
[156] and defined for a number n and a sequence of numbers hi, i = 1, . . . , N by:

rn =
1

N − n

N−n
∑

i=1

hihi+n. (8.1)

Choosing for n the numbers 1, . . . , m results in m values r1, . . . , rm. These numbers
are used as features describing the original sequence of amino acids.

Bu et al. tested all 402 amino acid indices collected by Tommi and Kanehisa for
prediction of structural class for amino acid sequences. They found best prediction
accuracy for the index proposed by Oobatake and Ooi [114] which describes the
average non-bonded energy per residue. Other well performing amino acid indices
were found to be strongly correlated to the Oobatake-Ooi index.

The optimal value for m depends on the chosen amino acid index. For Oobatake-
Ooi Bu et al. suggest to set m = 30. However, the optimal value is also dependent
on the data. Note that m directly destines the number of features, so m should
generally be a smaller value for smaller databases in order to avoid overfitting. Bu
et al. used a database consisting of 359 proteins, so a value around 30 for m seems
perfectly reasonable.

The feature space based on auto-correlation of amino acid indices promises to be
an interesting complement to the feature space describing composition, transition,
and distribution, since it provides more information concerning the sequence of
amino acids.

8.2.3.3 Occurrence of Motifs

A third approach to transform a sequence to a feature space is to count the oc-
currence of certain motifs within a sequence. The question arises which motifs are
to be counted. This question can be tackled coming from two directions: Derive
motifs that show a high ability to discriminate classes within the training data, or
to use motifs generally found in bigger databases of sequences.

An example for the first approach is the work of Luo et al. [154]. By stepwise
discriminant analysis they chose 296 peptides whose frequencies are used for final
prediction of structural classes, among them 12 single amino acids, 62 dipeptides,
130 tripeptides, 23 tetrapeptides, 66 pentapeptides, and three hexapeptides. It
could be an interesting question, whether better motifs could be derived using an
apriori [4] like approach. Note that Luo et al. derive only continuous patterns
of amino acids, whereas motifs generally would allow wildcards within a pattern.
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Thus this approach to create a feature space could be a rewarding topic of further
research in order to derive more general patterns in a more efficient manner. As it
is it was only shown by Luo et al. to perform well on level of structural class for the
four main classes (α, β, α + β, and α/β) for a dataset allowing sequence similarity
of 40% (PDB40-B [28] and PDB40-J [119]). Similar approaches are inspired by
text-mining and create features based on n-grams, like [95], [149], and [43]. We
did not make further use of feature spaces of this kind. Nevertheless, this approach
seems to be well worth further examination.

The other direction is proposed by Ben-Hur and Brutlag [19]: Based on any
established database of motifs the occurrence of motifs in a sequence is counted. So
the dimensionality of the feature space is the number of known motifs and will be
quite high. The idea is to use a simple linear kernel as dot-product of two feature
vectors:

K(x, x′) = Φ(x) · Φ(x′), (8.2)

where Φ(x) = (φm(x))m∈M, and φm(x) is the number of occurrences of the motif
m in sequence x for the given motif database M. Since a motif will appear usually
only once in a sequence, this kernel basically counts the number of motifs that are
common to both sequences thus providing a similarity measure for two sequences
generally emphasizing frequent patterns as provided by a database of motifs.

This approach has some intrinsic drawbacks: the evaluation is very difficult to
be performed reliably, since the motifs are derived from a generally unknown set
of proteins that could contain also proteins of the test set. Furthermore many
motif databases are constructed in a supervised way from known protein families.
Ben-Hur and Brutlag therefore propose to use the eBLOCKS database [140]. This
database of motifs is based on groups of proteins with varying levels of similarity, i.e.,
in an un-supervised way. Motifs are made out of aligned blocks of sequences using
the eMOTIF method [112]. Nevertheless, the evaluation of prediction performance
based on such feature spaces remains somewhat unreliable.

This approach theoretically seems to fetch some of the benefits of profile-profile
alignments. But unfortunately, we found this feature space not to be helpful in our
tests on different datasets.

8.2.3.4 Summary

The feature spaces for representation of proteins proposed so far seem far from
perfect. We found the extension of the feature space on composition, distribution,
and transition of predefined groups by values derived for amino acid indices by
means of an auto-correlation function to be sometimes helpful. A problem here
could be that the number of features in comparison to the number of instances
becomes to big. The motif based feature space on the other hand did not turn out
to be supportive to our tests, but it seems nevertheless promising and well worth
further studies. As noted in other studies [22], in machine learning approaches
to bioinformatics many new methods are developed or applied, but in most cases
essentially the same feature spaces are employed. It might therefore be rewarding to
put more effort in development of more sophisticated feature space representations
of proteins with respect to a certain problem.

8.2.4 Related Approaches

8.2.4.1 Voting of Coupled Binary Classifiers

Ding and Dubchak [53] tested neural nets and several combinations (all-versus-all
and one-versus-others) of support vector machines on the task of protein fold pre-
diction. They also provided data based on feature sets of composition, distribution,
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and transition as described above which was often used afterwards for evaluat-
ing machine learning approaches. Each protein was represented in several feature
spaces. The respective learners for each feature space were combined by a voting
procedure.

Similar and often also simpler approaches were used by other groups. Ding
and Dubchak are well known mainly for the provided data (see below), while other
groups evaluated similar approaches on different data.

8.2.4.2 Classification with Respect to the Hierarchy

Chung et al. [40] propose a hierarchical classifier architecture for separating first
structural classes of proteins, then separately classifying the folds belonging to the
respective structural class. The hierarchical architecture allows different kinds of
base classifiers. Chung et al. use neural networks and support vector machines di-
rectly as a multi-class classifier as proposed in [100]. Thus their method is somewhat
similar to ours but does not further take into consideration reduction of polytomous
to dichotomous classification problems. Also their approach seems a proposal espe-
cially adapted to the problem of hierarchically protein fold classification, although
it might be easily to be generalized. Their method is evaluated on the feature space
and data proposed by Dubchak et al. [57].

Huang et al. [85] furthermore propose a method to select the most promising
features, based on a similar architecture as [40] but now combining the classifiers
for structural class level (level 1) and fold level (level 2) in a parallel manner by an
AND-gate since level 2 could gain advantage from features which were not selected
for level 1 (thus level 2 gets unfiltered features for classification). Their method is
also evaluated on the feature space and data proposed by Dubchak et al. [57].

8.2.4.3 Bayesian Classification

Chinnasamy et al. [35] proposed a method based on a Bayesian classifier, called
BAYESPROT. Obviously the method is specialized to protein fold classification
and uses the feature space proposed by Dubchak et al. (see section 8.2.3.1). The
extracted features are discretized to four discrete states. For the discretized fea-
tures Tree-Augmented Bayesian Networks were built. By Mean Probability Voting
(MPV) then either the structural class or the fold is classified. These two predictions
are connected.

BAYESPROT is evaluated on data also used by many other methods (see section
8.3.1.1), but it seems more successful than the other methods based on neural
networks and SVMs (see section 8.3.2.1).

8.2.5 Summary

While machine learning probably will not detect the pure physical laws of folding
of proteins it will hopefully help to reveal rules that help detecting and defining
these laws. Although alignment based methods usually will gain better results
than machine learning methods do, they usually will explain nothing concerning
the process of protein folding. Thus applying machine learning methods to fold
recognition remains an interesting enterprise from a scientific point of view.

Clearly, support vector machines on the other hand do not lend themselves
to human inspection. But other algorithms can actually be more accurate than
support vector machines on certain datasets. The here proposed method of EHNDs
is compatible with most base learners.

Nevertheless, finding promising feature spaces is a task of its own. It first of all
requires biochemical expertise. But also machine learning methods might help once
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again, e.g. to discern feature spaces that are able to represent a protein well from
others that do not.

Note again that the line between alignment based methods and machine learn-
ing methods is not always clear. Another possibility would be to address alignment
based methods as examples of lazy learners. This would once more point out that
they are not able to provide a model. However, we would like to emphasize the im-
portance of feature spaces to the methods we address as ‘machine learning’ methods
in a somewhat restricted notion. This dependence makes a comparison of alignment
based methods and feature space based methods difficult.

8.3 Evaluation

8.3.1 Data

8.3.1.1 Ding and Dubchak

The training and test set provided by Ding and Dubchak [53] are available under
http://www.nersc.gov/~cding/protein. Both sets are also appended in .arff

format in the appendix. For training Ding and Dubchak selected 27 folds which
have at least seven proteins in the database. These 27 folds in the data represent all
major structural classes: α, β, α/β, and α + β. Note that this criterion leaves only
320 proteins of the originally presented 605 in the training set. For an independent
test set Ding and Dubchak selected 386 representatives from the PDB-40D [101].
This set contains the SCOP sequences of less than 40% sequence identity with each
other. The representatives were to present the same 27 folds as the training set.
Proteins were excluded when they had a sequence identity of more than 35% with
any of the proteins in the training set. For fold recognition this level of sequence
identity of 35% is still quite high. Consequently the test set of Ding and Dubchak
is known to contain some homologous proteins with respect to the training set [21].
Note that the test set at this point in time available under the cited URI contains
only 385 proteins (and so does our test set).

Obviously the proportion between size of training set (320) and size of test set
(385) is less than optimal. Also note that the SCOP classification provided by Ding
and Dubchak for their dataset is partially obsolete. Nevertheless we used these
data as they were (including the original feature space – see section 8.2.3.1) for
comparing our method with several other machine learning approaches that used
the same data.

8.3.1.2 Ding-Dubchak-Bindewald

Bindewald et al. [21] and following them Gewehr et al. [71] used a modification of
the datasets of Ding and Dubchak. Bindewald et al. report to make use of a more
recent SCOP version (1.53) and to have removed homologous proteins from the
training set which result in a BLAST [7] e-value of less than 10−3 with any protein
of the testset. According to Jan Gewehr [70] this reduced dataset was also used in
[71].

The mapping of the proteins to a more recent version of SCOP than the original
mapping by Ding and Dubchak (version 1.53, as used by Bindewald et al.) results
in further reduction of both training and test set. The procedure leaves 240 proteins
for the training set and 373 proteins for the test set. Both sets cover 27 folds, as
the original sets, but some folds are represented within the training set by less than
seven instances.

We used for the reduced sets the original feature space of Ding and Dubchak
(section 8.2.3.1).
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The sets as used here are provided in .arff format in the appendix.

8.3.1.3 McGuffin-Bindewald

McGuffin and Jones [108] provide another dataset of 542 nonredundant domains
based on CATH version 1.7. The set is divided into a ‘unique’ and a ‘known’ domain
set. The unique set comprises 290 domains with folds unique within the data set.
The known set comprises 252 domains each having at least one other matching fold
in the data set. These data are available from http://www.cs.ucl.ac.uk/staff/L.

McGuffin/targets.html.
Bindewald et al. [21] adapted the data to CATH version 2.4. Thus they had

to remove four instances from the unique set because their domain definition has
changed or was not part of CATH version 2.4. The resulting data consist of the
known set of 252 instances covering 55 topologies and the unique set of 286 instances
covering 274 topologies. Note that 16 of the 55 topologies covered by the known set
are represented by only one instance. This fact makes the use of several machine
learning approaches (including EHNDs using SVMs as base learner) impossible,
since the fitting of a class probability estimation requires each class to have at least
two members. Of course, this architecture of data sets is anything but favorable
for machine learning approaches since one can not reasonably expect to find an
appropriate generalization for classes represented by only one or two proteins.

For features based on secondary structure elements we made use of the DSSP [88]
annotation as provided by McGuffin. The mapping of a DSSP state to a secondary
structure class was defined according to [9] by:

[G|H |I ] 7→ h,

[E|B] 7→ e,

[T |S|L] 7→ c,

where L is given in DSSP output as space or in some cases as underscore. No further
interpretation as e.g. removing short sequences of secondary structure elements was
done.

All sets are provided in .arff format in the appendix as we used them.

8.3.2 Results

8.3.2.1 Ding and Dubchak

SVMs were fitted on the training set of Ding and Dubchak. We then trained an
ensemble of 20 HNDs on the training set of Ding and Dubchak using SVMs as base
learners with the parameter setting obtained by the fitting procedure. SVMs were
used as described in section 7.3.

Furthermore we employed Bagging (40 iterations) with PART as base learners.
These algorithms were used as implemented in Weka, Bagging according to [27],
PART according to [67]. PART is a rule learning algorithm based on partial decision
trees. Bagged PART was already found to perform better than SVMs in some cases
[132]. Employing a rule learner may provide the additional benefit of possibly
obtaining explicit knowledge.

We reached on the respective test set an accuracy of more than 58% for the
EHNDs. We built also Ensembles of NDs that allow evaluation of the quality of hi-
erarchy representation in the feature space in direct comparison with EHNDs. The
results achieved with both, ENDs and EHNDs, are not worse than the results re-
ported for other machine learning approaches. A comparison with other approaches
using the same data – as we are aware of – is given in Table 8.4.
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Approach Prediction accuracy (Q)

Ding and Dubchak
NN (OvO) 41.8 %
SVM (OvO) 45.2 %
SVM (uOvO) 51.1 %
SVM (AvA) 56.0 %

Chung et al.
RBFN 49.4 %
Hierarchical Structure (MLP) 44.7 %
Hierarchical Structure (RBFN) 56.4 %
Hierarchical Structure (GRNN) 45.2 %
Hierarchical Structure (SVM ) 53.8 %

Huang et al. 56.36 %
Chinnasamy et al. 58.18 %
ENDs

(SVM) 58.96 %
(Bagged PART) 57.64 %

EHNDs
four structural classes (SVM) 58.18 %
five structural classes (SVM) 58.44 %
five structural classes (Bagged PART) 58.7 %

Table 8.4: Comparison of prediction accuracy for several machine learning ap-
proaches to fold recognition on the data of Ding and Dubchak.
The accuracy for other approaches is reported according to Ding and Dubchak: [53], Chung et
al.: [40], Huang et al.: [85], and Chinnasamy et al.: [35]. These approaches used the training set
and the test set as provided by [53]. We used the same data for training and testing ensembles of
20 NDs (ENDs) and ensembles of 20 HNDs (EHNDs). Both performed as well as the best of the
other approaches, ENDs slightly better than EHNDs. Both ensembles employed SVMs as base
learners using a radial basis function as kernel with parameters C = 4 and γ = 0.125. Finally we
trained ENDs and EHNDs (20 ensemble members) employing Bagging (40 iterations) with PART
(Bagged PART) as base learners. Here EHNDs performed slightly better than ENDs.
For EHNDs two different hierarchies were employed: a distinction of four structural classes (as by
Chung et al. and Huang et al.), and the more appropriate distinction of five structural classes (as
by Chinnasamy et al.).
Reported are results on the complete feature set (126 features) for the independent test set.
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Group Method Training Test
TPR FPR PPV F1 TPR FPR PPV F1

α SMO 1 0.0014 0.9688 0.9842 0.6393 0.0091 0.6818 0.6599
ENDs 1 0 1 1 0.6557 0.0049 0.7888 0.7161
EHNDs (4) 1 0 1 1 0.7049 0.0094 0.7104 0.7077
EHNDs (5) 0.9818 0.0004 0.9841 0.983 0.7377 0.009 0.7187 0.7281

β SMO 0.7909 0.0134 undef undef 0.453 0.0416 undef undef
ENDs 0.9818 0 1 0.9908 0.5726 0.0264 0.6801 0.6218
EHNDs (4) 0.9909 0.001 0.9912 0.9911 0.5128 0.0316 0.644 0.571
EHNDs (5) 0.9909 0.002 0.9829 0.9869 0.5128 0.0331 0.6339 0.567

α/β SMO 0.9487 0.0055 0.9305 0.9395 0.5655 0.0379 0.5272 0.5457
ENDs 0.9573 0.0054 0.9471 0.9521 0.5862 0.0401 0.517 0.5495
EHNDs (4) 1 0.0017 0.984 0.9919 0.6 0.0335 0.5637 0.5813
EHNDs (5) 0.9915 0.0009 0.9917 0.9916 0.5931 0.0339 0.5597 0.5759

α + β SMO 0.9211 0.0065 0.8737 0.8967 0.5806 0.0127 0.671 0.6225
ENDs 1 0 1 1 0.5645 0.0108 0.7048 0.6269
EHNDs (4) 0.9474 0 1 0.973 0.5484 0.0182 0.5959 0.5712
EHNDs (5) 0.65 0.0127 undef undef 0.2571 0.0345 undef undef

small EHNDs (5) 1 0 1 1 0.9259 0.0028 0.9615 0.9434
proteins

Total SMO 0.9 0.0076 undef undef 0.5455 0.0304 undef undef
ENDs 0.9781 0.002 0.9806 0.9794 0.5896 0.0256 0.6399 0.6137
EHNDs (4) 0.9906 0.001 0.9911 0.9909 0.5818 0.0266 0.6166 0.5987
EHNDs (5) 0.9688 0.0018 undef undef 0.5844 0.0276 undef undef

Table 8.5: Evaluation of SVMs, ENDs, and EHNDs for Ding and Dubchak data.
The table provides more detailed evaluation of classification performance of an all-versus-all SVM
(SMO) classification, ENDs (SVM), and EHNDs (SVM) (same as in Table 8.4). EHNDs were
trained with two different hierarchies, discerning four structural classes (4), and five structural
classes (5), respectively. The group ‘small proteins’ is given separate only for EHNDs trained on
the respective hierarchy (5).

α β α/β α + β

· · · · · · · · · · · · · · · · · · · · · · · · · · · Four-helical up-and-down bundle

· · · · · · · · · · · · · · · · · · · · · · · · · · · Cytochrome c

· · · · · · · · · · · · · · · · · · · · · · · · · · · EF-hand

· · · · · · · · · · · · · · · · · · · · · · · · · · · 4-helical cytokines

· · · · · · · · · · · · · · · · · · · · · · · · · · · DNA-binding 3-helical bundle

· · · · · · · · · · · · · · · · · · · · · · · · · · · Globin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta-Trefoil

· · · · · · · · · · · · · · · · · · · · · · · · · · · Immunoglobulin-like beta-sandwich

· · · · · · · · · · · · · · · · · · · · · · · · · · · OB-fold

· · · · · · · · · · · · · · · · · · · · · · · · · · · Viral coat and capsid proteins

· · · · · · · · · · · · · · · · · · · · · · · · · · · ConA-like lectins/glucanases

· · · · · · · · · · · · · · · · · · · · · · · · · · · Lipocalins

· · · · · · · · · · · · · · · · · · · · · · · · · · · SH3-like barrel

· · · · · · · · · · · · · · · · · · · · · · · · · · · Trypsin-like serine proteases

· · · · · · · · · · · · · · · · · · · · · · · · · · · Cupredoxins

· · · · · · · · · · · · · · · · · · · · · · · · · · · Ribonuclease H-like motif

· · · · · · · · · · · · · · · · · · · · · · · · · · · Periplasmic binding protein-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · NAD(P)-binding Rossmann-fold domains

· · · · · · · · · · · · · · · · · · · · · · · · · · · Thioredoxin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · P-loop containing nucleotide triphosphate hydrolases

· · · · · · · · · · · · · · · · · · · · · · · · · · · alpha/beta-Hydrolases

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta/alpha (TIM)-barrel

· · · · · · · · · · · · · · · · · · · · · · · · · · · FAD (also NAD)-binding motif

· · · · · · · · · · · · · · · · · · · · · · · · · · · Flavodoxin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · Small inhibitors toxins lectins

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta-Grasp

· · · · · · · · · · · · · · · · · · · · · · · · · · · Ferredoxin-like

Figure 8.4: Visualization of the confusion matrix for the test of SVMs over the data
set of Ding and Dubchak.
Confusion matrix of an all-versus-all classification using SVMs as base learners.
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α β α/β α + β

· · · · · · · · · · · · · · · · · · · · · · · · · · · Four-helical up-and-down bundle

· · · · · · · · · · · · · · · · · · · · · · · · · · · Cytochrome c

· · · · · · · · · · · · · · · · · · · · · · · · · · · EF-hand

· · · · · · · · · · · · · · · · · · · · · · · · · · · 4-helical cytokines

· · · · · · · · · · · · · · · · · · · · · · · · · · · DNA-binding 3-helical bundle

· · · · · · · · · · · · · · · · · · · · · · · · · · · Globin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta-Trefoil

· · · · · · · · · · · · · · · · · · · · · · · · · · · Immunoglobulin-like beta-sandwich

· · · · · · · · · · · · · · · · · · · · · · · · · · · OB-fold

· · · · · · · · · · · · · · · · · · · · · · · · · · · Viral coat and capsid proteins

· · · · · · · · · · · · · · · · · · · · · · · · · · · ConA-like lectins/glucanases

· · · · · · · · · · · · · · · · · · · · · · · · · · · Lipocalins

· · · · · · · · · · · · · · · · · · · · · · · · · · · SH3-like barrel

· · · · · · · · · · · · · · · · · · · · · · · · · · · Trypsin-like serine proteases

· · · · · · · · · · · · · · · · · · · · · · · · · · · Cupredoxins

· · · · · · · · · · · · · · · · · · · · · · · · · · · Ribonuclease H-like motif

· · · · · · · · · · · · · · · · · · · · · · · · · · · Periplasmic binding protein-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · NAD(P)-binding Rossmann-fold domains

· · · · · · · · · · · · · · · · · · · · · · · · · · · Thioredoxin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · P-loop containing nucleotide triphosphate hydrolases

· · · · · · · · · · · · · · · · · · · · · · · · · · · alpha/beta-Hydrolases

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta/alpha (TIM)-barrel

· · · · · · · · · · · · · · · · · · · · · · · · · · · FAD (also NAD)-binding motif

· · · · · · · · · · · · · · · · · · · · · · · · · · · Flavodoxin-like

· · · · · · · · · · · · · · · · · · · · · · · · · · · Small inhibitors toxins lectins

· · · · · · · · · · · · · · · · · · · · · · · · · · · beta-Grasp

· · · · · · · · · · · · · · · · · · · · · · · · · · · Ferredoxin-like

Figure 8.5: Visualization of the confusion matrix for the test of ENDs over the data
set of Ding and Dubchak.
Confusion matrix of ENDs employing SVMs as base learners as presented in Table 8.4.
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Figure 8.6: Visualization of the confusion matrix for the test of EHNDs over the
data set of Ding and Dubchak (four class hierarchy).
Confusion matrix of EHNDs for a four class hierarchy employing SVMs as base learners as pre-
sented in Table 8.4.
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· · · · · · · · · · · · · · · · · · · · · · · · · · · Small inhibitors toxins lectins

Figure 8.7: Visualization of the confusion matrix for the test of EHNDs over the
data set of Ding and Dubchak (five class hierarchy).
Confusion matrix of EHNDs for a five class hierarchy employing SVMs as base learners as presented
in Table 8.4.
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Figure 8.8: Visualization of the confusion matrix for the test of EHNDs over the
data set of Ding and Dubchak (five class hierarchy).
Confusion matrix of EHNDs for a five class hierarchy employing Bagging (40 iterations) with
PART as base learners as presented in Table 8.4.
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Approach Prediction accuracy (Q)

PDB-BLAST 58.08 %
MANIFOLD 74.93 %
Alignment Combination 80 %
EHNDs

(Bagged PART) 52.01 %
(SVM) 50.67 %

Table 8.6: Comparison of prediction accuracy for several alignment based ap-
proaches to fold recognition on the data of Ding and Dubchak as reduced by Binde-
wald et al.
The accuracy for other approaches is reported for PDB-BLAST and MANIFOLD according to
[21], and for Alignment Combination according to [71]. These approaches used the training set
and the test set (respectively only the test set for parameter free methods) as provided by [53] and
reduced by Bindewald et al. [21].
We used the same data mapped to the feature space introduced by Ding and Dubchak for training
ensembles of 20 HNDs (EHNDs) with Bagging (40 iterations) of PART (Bagged PART) and SVMs,
respectively, as base learners. For SVMs a radial basis function was used as kernel with parameters
C = 1024 and γ = 0.044.

Chinnasamy et al. [35] seem to discern five stuctural classes for the dataset.
This is appropriate, since the fold ‘Small inhibitors, toxins, lectins’ belongs to the
structural class ‘Small proteins’. This is given in the classlist provided by Ding
and Dubchak, but the fold is subsumed under the structural class α + β in [53].
Other hierarchy based approaches used a hierarchy based on four structural classes.
We therefore tested EHNDs using both hierarchies. Using the more appropriate
hierarchy of five structural classes improves the accuracy slightly.

We provide also further evaluation of the results for a classification by SVMs
(pairwise classification), ENDs (SVM), and EHNDs (SVM) (Table 8.5, and Figures
8.4, 8.5, 8.6, 8.7, and 8.8).

8.3.2.2 Ding-Dubchak-Bindewald

For comparison with alignment methods that use a modified version of the sets
of Ding and Dubchak we trained also Ensembles of 20 HNDs with the respective
training set using Bagging (40 iterations) with PART and SVMs, respectively, as
base learners. Parameters for SVMs (using a radial basis function as kernel) were
fitted on the training set. The obtained results on the respective test set were worse
than for the original sets. Obviously, for these data EHNDs can not keep pace with
the best alignment based methods. An overview is presented in Table 8.6.

8.3.2.3 McGuffin-Bindewald

For the McGuffin known set as prepared by Bindewald et al. mapped to the feature
space introduced by Ding and Dubchak we trained an Ensemble of 20 HNDs using
Bagging (40 iterations) with PART as base learners. SVMs could not be used as
base learners for these data for reasons explained above. By tenfold cross-validation
we obtained an accuracy of 45.63%. This set is referred to as the ‘most difficult
set’ by Gewehr et al. [71]. Indeed all methods reach accuracy values well below the
respective values for the Ding-Dubchak-Bindewald set.

Using only cross-validation on the known set, EHNDs perform relatively well and
increase the accuracy compared to its base learner. However, the value achieved
by cross-validation on the known set only is not directly comparable to the results
of the other methods. Bindewald et al. performed a rather complicated evaluation
on these data. The complete set (known and unique) was used as templates, the
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Approach Prediction accuracy (Q)

PDB-BLAST 13.25 %
GenTHREADER 14 %
MANIFOLD 33.96 %
Alignment Combination 42 %
J48 leave-one-out* – known-vs-complete 21.43 %
EHNDs

leave-one-out* – known-vs-complete (J48) 32.94 %
leave-one-out* – known-vs-complete (Bagged PART) 42.06 %

Bagged PART 10-fold cross-validation – known 43.25 %
ENDs 10-fold cross-validation – known (Bagged PART) 46.03 %
EHNDs

10-fold cross-validation – known (Bagged PART) 45.63 %
20-fold cross-validation – known (Bagged PART) 45.24 %
leave-one-out – known (Bagged PART) 44.44 %

Table 8.7: Comparison of prediction accuracy for several alignment based ap-
proaches to fold recognition on the data of McGuffin as adapted by Bindewald
et al.
The accuracy for other approaches is reported for PDB-BLAST and MANIFOLD according to
[21], for GenTHREADER and Alignment Combination according to [71]. These approaches used
the known set and the unique set as provided by [108] and adapted by Bindewald et al. [21] in a
specialized leave-one-out procedure as proposed by Bindewald et al.
The same procedure was performed with J48 (C4.5) and EHNDs employing J48 and Bagged PART,
respectively, as base learners. We used the same data mapped into the feature space introduced
by Ding and Dubchak.
Furthermore we performed tests by cross-validation on the known set only for ensembles of 20
HNDs using Bagging (40 iterations) with PART as base learners. The thereby reached accuracy is
not directly comparable with the values of the alignment based methods but with the respective
base learner and with ENDs employing the same base learner.
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known set only as targets. Gewehr et al. followed the procedure of Bindewald et al.
This evaluation resembles a leave-one-out cross-validation on the complete set

using only instances from the known set for testing. This testing procedure is highly
unfavorable for a machine learning approach since the complete set consists of 317
classes represented by 538 instances. 268 classes (85%) are therefore represented by
only one instance (consuming 50% of all instances for classes that allow no gener-
alization at all). Only 15 classes are represented by more than 2 instances within
the known set (27%), 20 within the complete set (6%). This allows practically no
appropriate generalizations. Nevertheless we assessed the general ability of machine
learning to cope with this procedure. Considering the large number of classes we
decided to use a decision tree algorithm, C4.5 [125], implemented in Weka as J48.
J48 reached an accuracy level of 21%.

Compared to the accuracy achieved with J48 EHNDs using J48 as base learner
improve considerably. Using Bagging (40 iterations) with PART as base learner
EHNDs even reach the level of accuracy of the so far best known alignment based
method.

We also trained an ensemble of NDs for comparison with EHND on equal terms,
employing Bagging (40 Iterations) with PART as base learner and running a tenfold
stratified cross-validation on the known set only. Here ENDs were slightly better
than EHNDs.

An overview over the obtained results is provided by Table 8.7.

8.3.3 Discussion

The comparison with other machine learning approaches on the same data and
feature space shows EHNDs to perform well. The obtained results are not worse
than the results reported for the best of the other methods. On the other hand
EHNDs do not improve very much in comparison to e.g. all-versus-all support
vector machines. One may wonder whether the reachable accuracy on the given
data set is limited by the chosen feature space.

This question becomes more important regarding the other experiments: The
comparison with respect to alignment based methods does not evaluate the pure
performance of EHNDs versus alignment based methods. The performance heavily
depends on the feature space. Were in the first experiment all methods used the
same feature space, here are the same proteins but different representations used.
This is unavoidable in comparison to alignment based methods, that do not at all
make directly use of extracted features.

The second experiment shows alignment based methods to perform much bet-
ter than our method. This may occur due to considerable sequence similarity of
several instances in the datasets. Also some classes are represented by very few
members since some instances were excluded from the original set. Thus deriving
a appropriate generalization becomes more difficult.

The third experiment is not easy to be interpreted. The testing procedure used
in the compared methods is not at all suitable for any machine learning approach.
But the data are prepared especially to evaluate alignment based methods and thus
thought to be ‘more difficult’ [71]. Evaluating by cross-validation on the known
set only a remarkable result can be achieved. These test are also showing EHNDs
to improve well upon their respective base learner. But even following the more
exhaustive specialized leave-one-out approach on the complete data set that is very
unsuitable to machine learning methods, EHNDs reach the level of the so far best
known alignment based method using Bagged PART as base learner.

The presented results raise another question. The difference in performance
between ENDs and EHNDs ceteris paribus is ambiguous. On the same dataset for
one base learner ENDs are better than EHNDs, but vice versa employing another
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base learner and also alternating assessing different superclasses separately (Table
8.5). However, the differences are mostly not very pronounced. This leads us to
the assumption that the defined hierarchy is at least not delusive. This assumption
is also found to be supported by the confusion matrices showing less confusion
between different superclasses than within the same superclass, for EHNDs as well
as for other classifiers.

But evidently the hierarchy is not completely reflected in the chosen feature
space or if so, it cannot be taken advantage of it. This is not surprising since
the used hierarchies, SCOP and CATH, respectively, are constructed for structural
features in three-dimensional fold while the feature space is based on primary and
secondary structure only. Of course the three-dimensional structure is supposed to
depend on the sequence. But the relation between sequence and structure may not
be completely detectable in the features that represent the sequence to the learning
algorithm. Furthermore, it should not be neglected that the used hierarchies, SCOP
and CATH, and also another well known hierarchy of protein folds, FSSP, differ in
principle, in architecture, and of course also in actual assignments of folds – mainly
due to differences in opinion between the curators of these databases, as other
investigations have already pointed out [107], [79].

Based on our results we would therefore like to encourage further research con-
cerned with the application of machine learning algorithms to the problem of protein
fold classification to make more efforts in developing feature spaces that describe
proteins well than in developing new machine learning algorithms that again hinge
on the same somewhat insufficient feature space. Supported by theoretical consid-
erations (chapter 6) as well as by experiments on data with a hierarchical structure
being either completely or not at all reflected in the feature space (chapter 7) we
believe that the tradeoff in accuracy between ENDs and EHNDs would be a help-
ful instrument to evaluate the quality of a feature space with respect to a given
hierarchy.

8.4 Conclusion

We applied EHNDs to protein fold classification which is a task often coped with
as ‘fold recognition’ as well by pure machine learning approaches as by alignment
based approaches. The line between those approaches is not always clear. We
call pure ‘machine learning approaches’ algorithms that hinge on a feature space
representation of proteins.

Compared to the best known other machine learning approaches EHNDs per-
formed not worse than these. The comparison to alignment based methods is am-
biguous and strongly depends on the data set. Some data sets exhibiting a rela-
tive high sequence similarity between some instances will usually be more easy for
alignment methods. Furthermore the comparison of performance of machine learn-
ing methods versus alignment based approaches does not only assess the quality
of a pure machine learning algorithm but also the quality of the selected feature
space. Nevertheless, the accuracy of EHNDs on data considered to be ‘more diffi-
cult’ for alignment based methods improves to the level of the currently best known
alignment based method.

Interesting is the comparison between EHNDs and ENDs. On the considered
data there is not only not much of a gap between them but they are also alternating
in improving over one another. This might indicate that the used hierarchy is not
misleading but also not quite evident in the selected feature space.

So far introduced feature spaces for proteins all hinge on sequences and sec-
ondary structure elements. Since the structure of a protein is commonly supposed
to depend completely on its sequence the effort to find feature spaces that repre-
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sent as much as possible information concerning the sequence is understandable,
although this might not surpass alignment methods that naturally use all the in-
formation a sequence can provide – or even more by combination with profiles
or secondary structure alignment. But fold recognition is finally concerned with
three-dimensional structures. So we would like to point out as a possibly promis-
ing direction to find valuable feature representations for this task an investigation
whether there are well discriminating features in known structures that are highly
correlated with well extractable properties of sequences.

We believe that our method taken together with ENDs is of special interest in
evaluating the quality of a feature space with respect to a given hierarchy. Since
the widely used hierarchical structural classifications of proteins, SCOP, CATH,
and also FSSP, exhibiting a less pronounced hierarchy, differ quite considerably the
suggestion of McGuffin et al. [107] seems reasonable, to benchmark automatic fold
recognition methods on a consensus of structural classifications only.
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Chapter 9

Conclusion

9.1 Summary

Many classifiers work best on dichotomous data. At the same time many real world
applications require to consider many classes. Therefore several possibilities to
decompose polytomies to dichotomies are established in machine learning. Another
task in machine learning research is to build ensembles of classifiers that improve
over their single members. Some ensemble techniques are also able to decompose
polytomies to dichotomies. We reviewed especially ensembles of nested dichotomies
(ENDs) that have been recently shown to work well with respect to both of these
[66]. A third task is to incorporate domain knowledge in learning algorithms in
order to improve accuracy or efficiency.

Our method tackles those tasks in combination: EHNDs are ensembles built of
nested dichotomies that are reflecting a given hierarchy of classes. Compared to
ENDs the hierarchy is incorporated to improve accuracy. The success, however,
depends mainly on two conditions:

1. The given hierarchy must reflect the relations between classes according to an
arbitrary similarity measure.

2. The respective similarity of classes must be detectable in the feature space
representing instances of classes.

Both conditions being fulfilled, EHNDs were shown to improve over their base
learner and over ENDs not considering the hierarchy. The data used for this eval-
uation were created synthetically and exhibit a quite pronounced hierarchy. Con-
straining EHNDs by an improper hierarchy, however, leads to a dramatic decrease
of accuracy. This observation, confirming theoretical considerations, motivates the
idea to use the tradeoff in accuracy between ENDs and EHNDs for evaluation of
different feature spaces with respect to a given hierarchy.

EHNDs were applied to fold recognition using features based on primary and sec-
ondary structure. The established hierarchies in structural classification of proteins
(SCOP and CATH) might be quite less pronounced than the hierarchy in synthetic
data. Furthermore the respective hierarchies might not be completely reflected in
the feature space. On the other hand neither the hierarchies nor the feature spaces
were delusive since ENDs and EHNDs were close to one another in terms of accu-
racy. EHND performed at the level of best performing machine learning approaches
we are aware of. For difficult data EHNDs achieved also an accuracy level equal to
the best performing alignment based approach known to us.
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9.2 Outlook

9.2.1 Biological Applications

9.2.1.1 Fold Recognition

EHNDs were shown to work well on fold recognition compared to other machine
learning algorithms. They were also more accurate than some alignment based
methods on certain data sets and reached the level of accuracy of the best performing
alignment based method on difficult data. Perhaps EHNDs might therefore be
worthwhile to be considered to be used alongside alignment methods. For fold
recognition often not only the prediction with highest confidence is of interest but
the predictions at rank one to five or even one to ten. In further investigations we
would like to assess the performance of EHNDs under these conditions.

9.2.1.2 Using Structural Features

We have considered several different feature representations of proteins. They have
all in common to hinge on sequences and secondary structure elements. It is a
reasonable goal to find feature spaces that represent as much information as pos-
sible concerning the underlying sequence since it is commonly accepted that the
structure of a protein is completely determined by the protein’s primary structure.
On the other hand one might not surpass alignment methods based on these fea-
tures since alignment methods naturally use all information that can be provided
by a sequence. In combination with profiles or secondary structure alignments the
latter methods can make use of even more information than the information pro-
vided by a single sequence. On the other hand fold recognition is finally concerned
with three-dimensional structures. Thus a rewarding idea to find valuable feature
representations for fold recognition might possibly be to search for well discrimi-
nating features in known structures that are highly correlated with well extractable
properties of sequences.

9.2.1.3 Automated Classification

Since the hierarchy of structural classifications like SCOP and CATH is defined
with respect to three-dimensional structure using EHNDs might be more prolific in
automated classification, that is based on features derived from a known structure
instead of sequence based features only. Unfortunately deriving such features is
not trivial at all. But given a good structure-based feature representation we con-
sider EHNDs to be a very suitable method for hierarchical classification of protein
structure that is easily adaptive to either SCOP or CATH or any other hierarchical
database by simply constraining the learner with the proper hierarchy of classes.

9.2.1.4 Evaluating Feature Spaces

We have already motivated to search for new and better feature spaces for proteins.
Based on theoretical considerations as well as on experimentally derived results we
suggest to use the tradeoff in accuracy between ENDs and EHNDs for evaluation of
different feature spaces reflecting the same hierarchy. This is, however, a preliminary
idea that demands further investigation in order to be successfully employed.
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9.2.2 Generalizations

9.2.2.1 Hierarchy-Dependent Cost-Matrices

Using cost-matrices dependent on a class-hierarchy could also be a method to in-
troduce domain-knowledge concerning a hierarchical structure in data implicitly,
without building a classifier explicitly hierarchically. Thus any classifier could use
hierarchical information on data not being hierarchically structured itself. Further
studies on improvement of classification-accuracy for different hierarchically struc-
tured data would be desirable.

9.2.2.2 Hierarchical Structure as Meta-Reduction

Whilst the method we proposed in this thesis is very suggesting in combination with
Ensembles of Nested Dichotomies it is not at all restricted to them. It could easily
be generalized to reduce polytomous classification problems to several oligotomous
ones, which could improve performance for any classification method with respect to
a hierarchical structure in data. Consider, e.g., the all-versus-all coupling of support
vector machines, which is of quadratic complexity over the number of classes. This
is a very frequently encountered application of support vector machines. Using
hierarchical structure could reduce the overall required number of support vector
machines considerably. In case of the simple 16-class problem presented in Figure
6.1, one would require 5×

(

4
2

)

instead of
(

16
2

)

base-classifiers. Besides, the prediction
accuracy should also improve, since irrelevant classes are ignored while building
some classifiers. But this topic also demands further investigation.

One could also expect to improve accuracy as well as speed for the third bina-
rization considered in chapter 2, one-versus-others : All classes are to be considered
by all base learners only for the top-level superclasses while for subclasses only the
related classes and the respective instances are to be considered.

Let us note that the implementation we provided for our method can easily
be adapted to work with arbitrary classifiers instead of using NDs as level-wise
classifier. Furthermore it shows potential that was not taken advantage of in our
investigation although we performed preliminary experiments with respect to this
property: The separation of classes might be performed best on different levels by
different base learners, on different subsets of feature space, or by same base learners
but using different parameters. Exploring these possibilities, perhaps including
different combinations of feature spaces, would require to conduct many additional
time consuming experiments. Perhaps some future research can carry on these
ideas.

9.2.2.3 Hierarchical ECOC-Schemes

We referred ECOC as means of generalization of binarization techniques for all-
versus-all, one-versus-others, and some less frequent used techniques in chapter 3.
Also NDs are representable in the namely framework (chapter 4) even though it will
demand some further efforts to define the decoding procedure properly in this case.
Defining constraints concerning hierarchically structured classes that are applicable
to build proper ECOC schemes seems a promising idea since that would also provide
a general framework to apply hierarchical classification to arbitrary decomposition
procedures. We are aware of a possible drawback in setting to much constraints for
building ECOC schemes since this could compromise the two main requirements
for well working ECOC: row separation and column separation. However, the topic
might be interesting and well worth further consideration.
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9.2.2.4 Allowing Multiple Classes for One Instance

In chapter 8, section 8.1.2, we considered other fields of biological tasks of hierarchi-
cal classification, where applying machine learning approaches might be rewarding.
However, our method would require some adaptations to be applied to those tasks.
We considered the classification of protein functions. Since a single protein can
have several functions this task implies learning a function that maps an instance
to a subset of the set of classes. Functional classification of proteins exhibits a pro-
nounced hierarchical structure of classes. Thus it might be worthwhile to extend
EHNDs for covering classification tasks concerning classes that are not mutually
exclusive.

9.2.2.5 Generalizing Class-Relationships

The subsets considered for the definition of hierarchies of classes (Definition 6.3)
were disjoint. It may be possible that the similarity of classes differs for different
subspaces. Consider that the members of a subset of some classes are more similar
to each other than they are to other classes not contained in the respective subset,
but only with respect to certain features, and that they would cluster to other
subsets with respect to other features. Thus the possible subsets defining related
classes would not be disjoint any more and defining a respective tree, that is a
hierarchy of classes, would not be possible.

Also in chapter 8, section 8.1.2 we encountered the well established hierarchy of
biological entities, Gene Ontology. As we already have noted there, Gene Ontology
resembles not a pure hierarchy but a graph that could be considered to be a directed
acyclic graph (DAG). A possible and interesting extension of EHNDs therefore could
be to use DAGs instead of hierarchies. However, the impact on the method would
not be a small one since the decoding procedure of NDs ought to be adapted because
the class probability estimates are based on the assumption of independence of
dichotomies.

Perhaps an alternative would be to employ an ensemble of EHNDs where the
ensemble members, single ensembles of HNDs, are built with respect to different
hierarchies that taken together define the respective DAG.

9.3 Conclusion

The method EHNDs proposed in this thesis may be considered for further studies
in possible applications using proper feature spaces or to assess feature spaces with
respect to a given hierarchy. Several directions of generalizations were suggested
with respect to theoretical or practical enhancements. We therefore believe to have
shown that EHNDs may remain an interesting topic of scientific research in the
future and hope that further developments can be based on the considerations
presented in this thesis.
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Appendix A

Data and Implementations

The appended compact disc provides the data and software used for evaluation
of our method. EHNDs were implemented in Java within the Weka-framework.
Further information is provided within the documentation to the software.
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