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Reduction of Polytomies to Dichotomies

Motivation:

• application of binary classifiers to multiclass-problems

• simplifying decision-boundaries

Principle:

• create a set of mappings of n classes to 2 classes

• employ a set of binary classifiers each trained for one of the dichotomies
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Reduction of Polytomies to Dichotomies

Example:

• four-class problem:

C = {c1, c2, c3, c4}

• e.g. three mappings mi : C → {−1,1}:

m1 : c 7→

{

1 if c ∈ {c1, c2}
−1 if c ∈ {c3, c4}

m2 : c 7→

{

1 if c ∈ {c1, c3}
−1 if c ∈ {c2, c4}

m3 : c 7→

{

1 if c ∈ {c2, c3}
−1 if c ∈ {c1, c4}

• Resulting decomposition ma-

trix:










1 1 −1
1 −1 1
−1 1 1
−1 −1 −1











(one row per class, one col-

umn per mapping resp. per

classifier)
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Reduction of Polytomies to Dichotomies

Possibilities:

• one-versus-rest:










1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1











• all-pairs:










1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1











• minimal:










1 1
1 −1
−1 1
−1 −1











• complete:










1 −1 1 −1 1 −1 1
−1 1 1 −1 −1 1 1
−1 −1 −1 1 1 1 1
−1 −1 −1 −1 −1 −1 −1











• random (ECOC):










1 1 −1
1 −1 1
−1 1 1
−1 −1 −1











• nested dichotomies:










1 1 0
1 −1 0
−1 0 1
−1 0 −1










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Nested Dichotomies











1 1 0
1 −1 0
−1 0 1
−1 0 −1





















1 0 0
−1 1 0
−1 −1 1
−1 −1 −1











{1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

p(c ∈ {3,4}| x)

p(c ∈ {4}| x, c ∈ {3,4})p(c ∈ {3}| x, c ∈ {3,4})
p(c ∈ {2}| x, c ∈ {1,2})p(c ∈ {1}| x, c ∈ {1,2})

p(c ∈ {1,2}| x)

{1,2,3,4}

{1} {2,3,4}

{2} {3,4}

{3} {4}

p(c ∈ {2,3,4}| x)p(c ∈ {1}| x)

p(c ∈ {3,4}| x, c ∈ {2,3,4})p(c ∈ {2}| x, c ∈ {2,3,4})

p(c ∈ {3}| x, c ∈ {3,4}) p(c ∈ {4}| x, c ∈ {3,4})
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Properties of Nested Dichotomies

• The dichotomies are independent, thus class probability estimation is derived by

multiplication along a branch.

p(c = m|x) =
n−1
∏

i=1

(I(m ∈ Ci1) p(c ∈ Ci1|x, c ∈ Ci) +

I(m ∈ Ci2) p(c ∈ Ci2|x, c ∈ Ci))

• Any system of nested dichotomies is biased by imposing a certain order on the

set of classes.
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Properties of Nested Dichotomies

The class probability estimations will usually differ for two different systems of nested

dichotomies:

{1,2,3,4}

{1,2} {3,4}

{1} {2} {3} {4}

p(c ∈ {3,4}| x)

p(c ∈ {4}| x, c ∈ {3,4})p(c ∈ {3}| x, c ∈ {3,4})
p(c ∈ {2}| x, c ∈ {1,2})p(c ∈ {1}| x, c ∈ {1,2})

p(c ∈ {1,2}| x)

{1,2,3,4}

{1} {2,3,4}

{2} {3,4}

{3} {4}

p(c ∈ {2,3,4}| x)p(c ∈ {1}| x)

p(c ∈ {3,4}| x, c ∈ {2,3,4})p(c ∈ {2}| x, c ∈ {2,3,4})

p(c ∈ {3}| x, c ∈ {3,4}) p(c ∈ {4}| x, c ∈ {3,4})

p(c = 4|x) = p(c ∈ {3,4}|x)×

p(c ∈ {4}|x, c ∈ {3,4})

p(c = 4|x) = p(c ∈ {2,3,4}|x)×

p(c ∈ {3,4}|x, c ∈ {2,3,4})×

p(c ∈ {4}|x, c ∈ {3,4})
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How to build Nested Dichotomies

PROCEDURE insert(Class, Index,Tree)

{

Subtree← subtree of Tree at Index;

Replace node Index in Treewith (Subtree,Class);

RETURN Tree;

}

PROCEDURE fND(ClassList)

{

IF length(ClassList) < 3 THEN

RETURN ClassList;

ELSE

(First, Second|RestList)← ClassList;

Tree← (First,Second);

FOR i← 3 TO length(ClassList) DO

NextClass← ithelement of ClassList;

Index← random number r : 0 < r < 2i− 3;

Tree← insert(NextClass, Index, Tree);

RETURN Tree;

}

AB

A B

+ C →

ABC

AB

A B

C

AB

A B

+ C → ABC

AC

A C

B

AB

A B

+ C → ABC

A BC

B C
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Number of possible NDs

T(n) = (2n− 3)× T(n− 1)

T(1) = 1
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Why to build Ensembles

The ensemble will only be wrong if at least 50% of its members are wrong:
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Ensembles of Nested Dichotomies

• reduction of error variance by building an ensemble

• random sampling from space of possible NDs

• Due to diversity of NDs small size of ensemble (around 20 members) will usually

suffice.

• ENDs were shown to perform often better than other decomposition methods or

multiclass-learners.
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Hierarchically structured classes
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Simplifying a classification task by using a hierarchy
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Creating hierarchically nested dichotomies

• Create an ND for the classification problem concerning the superclasses.

• For each superclass: create an ND for the classification problem concerning the

subclasses of the respective superclass.

Each one out of T(4) = 15 binarizations.
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Resulting HND

One out of T(4)5 = 759,375 possible HNDs.
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Restriction of the space of possible NDs by a hierarchy

Assuming a completely balanced hierarchy describing n classes in l levels where at each level the
respective superclass is divided in c subclasses (n = cl):

T (n) = (2n− 3)× T (n− 1)

T (1) = 1

H(n) = H(cl)

= T (c)
1−cl

1−c

o : T (c2)

x : H(c2)
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Diversity of HNDs

• Space of HNDs is still growing over-exponentially.

• Single HND is still biased towards a more restrictive (binary) hierarchy.

• Building ensembles of HNDs can still be expected to reduce error variance.
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Evaluation on example

Group Method Cross-validation
TPR FPR PPV F1

A SVM 0.5 0.0333 undef undef
END 0.775 0.015 0.8457 0.8088
EHND 0.92 0.0053 0.92 0.92

B SVM 0.75 0.0167 undef undef
END 0.84 0.0107 0.8433 0.8417
EHND 0.93 0.0047 0.9294 0.9297

C SVM 0.895 0.007 0.8946 0.8948
END 0.76 0.016 0.7903 0.7749
EHND 0.955 0.003 0.9553 0.9551

D SVM 0.985 0.001 0.9851 0.985
END 0.92 0.0053 0.9217 0.9208
EHND 0.985 0.001 0.9851 0.985

Total SVM 0.7825 0.0145 undef undef
END 0.8238 0.0117 0.8503 0.8368
EHND 0.9475 0.0035 0.9474 0.9475
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Application to Fold Recognition

Dataset Ding and Dubchak, comparison to machine learning approaches:

Approach Prediction accuracy (Q)

Ding and Dubchak
NN (OvO) 41.8 %
SVM (OvO) 45.2 %
SVM (uOvO) 51.1 %
SVM (AvA) 56.0 %

Chung et al.
RBFN 49.4 %
Hierarchical Structure (MLP) 44.7 %
Hierarchical Structure (RBFN) 56.4 %
Hierarchical Structure (GRNN) 45.2 %
Hierarchical Structure (SVM ) 53.8 %

Huang et al. 56.36 %
Chinnasamy et al. 58.18 %
ENDs

(SVM) 58.96 %
(Bagged PART) 57.64 %

EHNDs
four structural classes (SVM) 58.18 %
five structural classes (SVM) 58.44 %
five structural classes (Bagged PART) 58.7 %
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Application to Fold Recognition

Dataset McGuffin as adapted by Bindewald et al., comparison to alignment based and machine
learning methods, different evaluation procedures:

Approach Prediction accuracy (Q)

PDB-BLAST 13.25 %
GenTHREADER 14 %
MANIFOLD 33.96 %
Alignment Combination 42 %
J48 leave-one-out* – known-vs-complete 21.43 %
EHNDs

leave-one-out* – known-vs-complete (J48) 32.94 %
leave-one-out* – known-vs-complete (Bagged PART) 42.06 %

Bagged PART 10-fold cross-validation – known 43.25 %
ENDs 10-fold cross-validation – known (Bagged PART) 46.03 %
EHNDs

10-fold cross-validation – known (Bagged PART) 45.63 %
20-fold cross-validation – known (Bagged PART) 45.24 %
leave-one-out – known (Bagged PART) 44.44 %
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Conclusions

• EHNDs outperform ENDs on synthetic data exhibiting a pronounced hierarchical

structure.

• Both, ENDs and EHNDs, improve considerably in comparison to their respective

base learners (on synthetic and on fold recognition data).

• ENDs and EHNDs perform well in comparison to established methods on sev-

eral fold recognition datasets. Some datasets, however, are more favorable to

alignment based methods.
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Conclusions

• Improvement of EHNDs w.r.t. ENDs can theoretically be expected if and only if

1. the given hierarchy is reflecting the relations between classes according to an

arbitrary similarity measure,

and

2. the respective similarity of classes is detectable in the features representing

instances of classes.

• ENDs and EHNDs are close to one another in terms of accuracy on fold recog-

nition datasets.

– The hierarchies (SCOP and CATH) may not be well reflected in the established

feature spaces.

– Furthermore, SCOP and CATH differ considerably, so even the hierarchy may

not be reflecting the relations between classes well.

• Preliminary idea: The tradeoff between ENDs and EHNDs might be helpful in

evaluation of new feature spaces given a reliable hierarchy.
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