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ABSTRACT
In this paper we propose a non-greedy active learning method
for text categorization using least-squares support vector
machines (LSSVM). Our work is based on transductive ex-
perimental design (TED), an active learning formulation
that effectively explores the information of unlabeled data.
Despite its appealing properties, the optimization problem is
however NP-hard and thus—like most of other active learn-
ing methods—a greedy sequential strategy to select one data
example after another was suggested to find a suboptimum.
In this paper we formulate the problem into a continuous
optimization problem and prove its convexity, meaning that
a set of data examples can be selected with a guarantee
of global optimum. We also develop an iterative algorithm
to efficiently solve the optimization problem, which turns
out to be very easy-to-implement. Our text categorization
experiments on two text corpora empirically demonstrated
that the new active learning algorithm outperforms the se-
quential greedy algorithm, and is promising for active text
categorization applications.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering

General Terms
Algorithms, Theory, Performance

Keywords
Active Learning, Convex Optimization, Text Categoriza-
tion, Transductive Experimental Design

1. INTRODUCTION
There has been a long tradition of research on active learn-

ing for text classification. In order to train a classification
model that can automatically assign semantic tags on docu-
ments, usually human experts need to provide a large set of
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labeled examples. Active learning reduces the labeling costs
by identifying and presenting the most informative examples
for experts to label.

Despite of a large body of work done by researchers, most
of active learning algorithms are still far from being satis-
factory and have apparent shortcomings. Many methods do
not explore the information about the distribution of unla-
beled data. As another drawback, nearly all the algorithms
take greedy strategies to iteratively select one examples af-
ter another, which is however suboptimal compared with
optimizing a set of selections at a time.

In this paper we propose a non-greedy active learning
method for text categorization using least-squares support
vector machines (LSSVM). Our work is based on trans-
ductive experimental design (TED) [17], an active learn-
ing formulation that effectively explores the information of
unlabeled data. Despite its appealing properties, the opti-
mization problem is however NP-hard and thus—like most
of other active learning methods—a greedy strategy to se-
lect one data example after another was suggested to find
a suboptimum. In this paper we transform TED problem
into an equivalent form and further replace the cardinality
constraint by a novel sparsity regularization. The original
discrete problem then becomes a continuous optimization
problem. A bit surprisingly, the new formulation is convex,
meaning that a globally optimal set of data examples can be
selected. To the best of our knowledge, few attentions have
been put to active learning algorithm that can select multi-
ple data examples simultaneously with a global optimality.
We describe an efficient learning algorithm that is very easy
to implement. Our text categorization experiments on two
text corpora empirically demonstrated that the new active
learning algorithm is superior in comparisons with compet-
itive methods.

The paper is organized as follows. In Section 2 we briefly
review the related work in active learning. In Section 3 we
begin by introducing the transductive experimental design
and then propose the idea of convex transductive experi-
mental design, where we prove the convexity and describe
the algorithm. We also discuss how to control the sparsity
of the result. Finally we empirically evaluate the suggested
method in Section 4 and conclude this work in Section 5.

2. RELATED WORK
There has been extensive research on the subject of active

learning. Existing approaches either select the most uncer-
tain data given previously trained models [5], or choose the
most informative data that optimize some expected gain



[3, 10, 2]. The latter typically requires expensive retrain-
ing of models when evaluating each candidate. Some other
approaches assume generative models and explore the de-
pendency between inputs and outputs [11]. Active learning
methods for Gaussian processes [6] has also been suggested.

[16] proposed active learning methods for support vector
machines. The method queries points to reduce the size of
the version space as much as possible. As the difficulty in
measure the version space, they provided three ways of ap-
proximating the procedure, Simple Margin, MaxMin Margin
and Ratio Margin. The simple margin method, which selects
the example closest to the current decision boundary, was
also proposed by [13] and has been very popular. However,
the method tends to select untypical data points, which may
lead to a poor performance.

Active learning is also referred to as experimental design
in statistics [1]. In order to learn a predictive function from
experiment-measurements pairs, experimental design selects
the most informative experiments to measure, given that
conducting an experiment is expensive. [12] proposes an ex-
perimental design method based on logistic regression mod-
els. The goal is to minimize the variance. As the variance
estimation depends on the label value of data point to be
labeled, a factitious label has to be added into the training
data before evaluating the variance reduction for each candi-
date data point. This procedure takes a lot of computation
power when the size of the candidate set is large. [8] also
investigated the active learning problem for logistic regres-
sion models. Their method requires non-trivial optimization
techniques to solving submodule problems.

Usual experimental design methods aim to reduce the un-
certainty of models (or model parameters), transductive ex-
perimental design (TED) was proposed in [17] to directly
reduce the assessed uncertainty of predictions on given un-
labeled data, and thus effectively explore the information of
unlabeled data in active learning. The method was applied
to active learning for sponsored search [20]. A related ap-
proach was applied in image retrieval [7]. However, despite
its appealing performance, the problem is essentially NP-
hard, and was thus solved by a greedy sequential algorithm
that each time selects only one data example.

3. ACTIVE LEARNING WITH CONVEX TED

3.1 The Setting
Suppose that we have a binary classification problem. A

classifier is expected to predict the relationship from the
feature vector x of a document to its labels y ∈ {−1, 1} via

y = sign (f(x)) (1)

where the function is assumed to be f(x) = w>x in this pa-
per. We note that a bias term can be incorporated into the
form by expanding the weights and input feature vector as
x← [x, 1] and w← [w, b]. Based on a set of training exam-
ples {(xi, yi)}Ki=1, the so-called least-squares support vector
machine [14] (LSSVM) is equivalent to least-square ridge re-
gression, which, in linear case, learns f(x) by estimating w
via

w∗ = min
w

(
J(w;XA) =

X
i∈A

�
w>xi − yi

�2

+ µ‖w‖2
)

(2)

where µ > 0, ‖ · ‖ is the vector 2-norm, XA = {xi}i∈A is a

set of |A| = K training examples. The method has shown
state-of-art text categorization performance [19, 18].

A generic active learning problem aims to choose an opti-
mal training set XA, what we call active set in this paper,
from a set of candidates XC , |C| = N , such that some quality
measurement of w∗ is maximized.

Throughout this paper, we will somewhat abuse the nota-
tion, for example, XA and XC represent sets, but may also
be used to denote the matrices (xi)i∈A and (xj)j∈C , respec-
tively. Their meanings should be clear given their contexts.
If the feature vector x be D-dimensional, then XA ∈ RK×D.
|A| denotes the size of set A, and |a| denotes the absolute
value of a if a is a scalar. Moreover, we use ‖β‖0, ‖β‖1
and ‖β‖ to represent the `0-norm, `1-norm and `2-norm of
vector β, respectively. We note that ‖β‖0 is the number of
nonzero elements in β.

3.2 Transductive Experimental Design
Based on the learning method (2), the key idea of TED

[17] is to minimize the average predictive variance of the
learned function f(x) on pre-given data XP , |P| = M , which
are to be predicted. It is formulated as an optimization
problem

min
A⊂C,|A|=K

1

M
trace

�
XPH−1X>

P

�
(3)

where H is the Hessian matrix

H =
∂J(w;XA)

∂w∂w> = XAX>
A + µI (4)

In many applications, like text categorization, it is reason-
able to assume a large availability of unlabeled data XP ,
whose distribution should be taken into account to effec-
tively impact the choice of the active set A. Generally the
candidates XC can be a subset of XP , or a completely dif-
ferent set, or simply XC = XP .

Somewhat surprisingly, the predictive variance of f(x) =
〈w∗,x〉 depends only on the input features of training ex-
amples, due to the fact that, in J(w;XA) labels yi only
linearly couple with w and hence a second order derivative
with respect to w has all the yi terms canceled out. This in-
dependence of yi removes the complication of the unknown
factor of human labeling in active learning process. After
some mathematical derivation, the minimization of predic-
tive variance can be formulated as an equivalent optimiza-
tion problem with a cardinality constraint

min
A,αi∈RK

MX
i=1

‖xi −X>
Aαi‖2 + µ‖αi‖2 (5)

subject to |A| = K, A ⊂ C, xi ∈ XP

which reveals that TED aims to find the optimal common
set of K active examples XA to approximate every test data
xi ∈ XP by x̂i = X>

Aαi, i ∈ P. The approximation can be
seen as the (regularized) projection of xi onto the linear
subspace spanned by XA. Therefore, TED has a geometric
interpretation that it tends to find representative data XA
spanning a linear subspace to retain most of the information
of the whole set of test data XP . Therefore, given a suffi-
ciently large set XP , TED actually explores the information
about the distribution of unlabeled data.

Despite of the appealing interpretation, (5) is however an
NP-hard problem. Two suboptimal solutions have been sug-
gested so far. The first is a sequential algorithm that solves



a problem (5) of size K = 1 at each step, to approximate the
residuals of the previous step. The algorithm is described as
Algorithm 1.

Algorithm 1 Sequential TED

Require: candidates XC , unlabeled data XP , µ > 0, K;
1: initialize κi,j ← 〈xi,xj〉, for i ∈ P, j ∈ C;
2: repeat
3: j ← arg maxj∈C

P
i∈P κ2

i,j/(κj,j + µ);
4: A ← A∪ j;
5: κi,i′ ← κi,i′ − κi,jκi′,j/(κj,j + µ), for i ∈ P, i′ ∈ C;
6: until |A| = K;
7: return XA;

The second approach aims to optimize the set XA simul-
taneously, which replaces the cardinality constraint |A| = K
by an `1-norm regularization

min
β,αi∈RN

MX
i=1

‖xi −X>
C Bαi‖2 + µ‖Bαi‖2 + γ‖β‖1

subject to xi ∈ XP , B = diag(β), B � 0. (6)

The above formulation introduces a set of variables βj to
control the overall “on” and “off” of each candidate xj in
terms of being selected or not. The `1-norm ‖β‖1 enforces
some elements of β to be zero. The optimization is done
by alternatively optimizing βj or αj while fixing the other.
This problem is however non-convex, which means that the
results are highly sensitive to the initialization of the algo-
rithm, and can be easily trapped into a poor local minimum.

3.3 A Convex Formulation
In this section we introduce a new formulation of TED,

which is convex and hence avoids the risk of being trapped
into any local optimum. Unlike most of the other active
learning algorithms, the new method aims to select multiple
examples at a time with a guarantee of global optimum. We
will also show that the optimization procedure is actually
easy to implement.

Again, we introduce auxiliary variables β = [β1, . . . , βN ]
to control the inclusion of examples into the training set.
The optimization problem is

min
β,αi∈RN

MX
i=1

‖xi −X>
C αi‖2 +

NX
j=1

α2
i,j

βj
+ γ‖β‖1 (7)

subject to xi ∈ XP , βj ≥ 0, j = 1, · · · , N,

where αi = [αi,1, . . . , αi,N ]>. As suggested by the well-
known LASSO method [15], the `1-norm ‖β‖1 will enforce
some elements of β to be zero. It is not difficult to see,
if βj = 0, then all α1,j , . . . , αM,j must be 0, otherwise the
objective function goes to infinity, which means the j-th can-
didate is not selected. The new formulation appears to be
similar to (6), but we can prove that it is a convex problem
and thus guarantees a global optimal solution.

Theorem 1. The problem (7) is convex w.r.t. β, {αi}.
Proof. In the objective function, the first term is a square

loss and the third term is an `1-norm, both are known to
be convex. Since a summation of convex functions is also
convex, in the following we only need to prove that Sj =P

i α2
i,j/βj is convex too. A sufficient and necessary condi-

tion of Sj being convex is that its Hessian ∇Sj is positive

semidefinite, therefore we compute the second-order deriva-
tive terms

∂Sj

∂βj∂βj
=

2

β3
j

α>·,jα·,j

∂Sj

∂αi,j∂αi,j
=

2

βj
=

2

β3
j

ψ>i,jψi,j

∂Sj

∂αi,j∂βj
= −2αi,j

β2
j

= − 2

β3
j

α>j ψi,j

where α·,j = (α1,j , . . . , αM,j)
>, and ψi,j is a vector of length

M , whose i-th element is −βj and the rest are zeros. There-
fore we have

∇Sj =
2

β3
j

Ψ>
j Ψj (8)

where Ψj = (α·,j ,ψ1,j , . . . ,ψM,j). Given the condition

βj ≥ 0 and thus β3
j ≥ 0, therefore ∇Sj � 0. The proof

is completed.

By noticing the inequality

PM
i=1 α2

i,j

|βj |
+ γ|βj | ≥ 2

vuutγ

MX
i=1

α2
i,j , (9)

whose equality holds only if β2
j = 1

γ

PM
i=1 α2

i,j , we obtain

a necessary condition for the optimal solution of (7). We
plug this condition into (7) and find that the problem (7) is
equivalent to

min
αi∈RN

MX
i=1

‖xi −X>
C αi‖2 + 2

NX
j=1

vuutγ

MX
i=1

α2
i,j (10)

Though (7) and (10) are equivalent, we find it convenient to
implement an iterative algorithm to find the local optimum
of (7), which is also the global optimum, without accessing
any optimization package. The algorithm is based on the
observation that the update of β or αi while fixing the other
has an analytical solution.

αi = (diag(β)−1 + XCX
>
C )−1XCxi, i = 1, . . . , M (11)

βj =

vuut 1

γ

MX
i=1

α2
i,j , j = 1, . . . , N. (12)

The iterations proceed as described in Algorithm 2. Simi-
lar to Algorithm 1, the method is extremely easy to imple-
ment, without requiring any optimization package. The ma-
jor computational cost comes from the update of αi, which
can be greatly simplified by applying the Woodbury identity
if the dimensionality of data is smaller than the size of can-
didates, which is the case in our experiments since we often
reduce the dimensionality of data before the data selection.
The computational cost can be further reduced by consid-
ering smaller sizes of XC and XP that are random subsets
from all available unlabeled data.

3.4 The Control of Sparsity
Compared with the greedy procedure described in Algo-

rithm 1, we lose the direct control on the budget |XA| = K.
A detailed relationship between γ and the resultant K needs
to be investigated, e.g., computing the whole solution path,



Algorithm 2 Convex TED

Require: candidates XC , unlabeled data XP , γ > 0;
1: initialize (αi,j);
2: repeat

3: βj ←
q

1
γ

PM
i=1 α2

i,j for j = 1, . . . , N ;

4: αi ← (diag(β)−1 + XCX
>
C )−1XCxi, for i = 1, . . . , M ;

5: until converge;
6: XA ← {xj |xj ∈ XC , βj 6= 0};
7: return XA

which is however not the scope of the current paper. We con-
jecture that the sparsity is almost monotonic with respect
to the regularization weight γ, so we can do line search to
find an appropriate γ that selects roughly K examples. We
provide Theorem 2 to show that the range of γ is upper
bounded by a value γmax, by checking the condition of pro-
ducing at least one non-zero element in β. This result can
be used to narrow down the range of our line search.

Theorem 2. A necessary condition for the cardinality con-
straint |β|0 ≥ 1 is

γ ≤ γmax = max
j∈C

X
i∈P

(x>i xj)
2 (13)

Proof. Suppose that γ is sufficiently large so that βj = 0
and thus αi,j = 0 for all i and j. We compute the partial
derivatives of the two costs in (10)

d1 =
∂
PM

i=1 ‖xi −X>
C αi‖2

∂α·,j
= −2 · (x>1 xj , . . . ,x

>
Mxj)

d2 =
∂2
PN

j=1

q
γ
PM

i=1 α2
i,j

∂α·,j
=

2
√

γqP
i α2

i,j

(α1,j , . . . , αM,j)

where α·,j = (α1,j , . . . , αM,j). It is easy to see that ‖d2‖2
equals to a constant = 4γ. The first derivative tends to pull
α·,j away from the origin while the second tends to push
α·,j toward the origin. Thus in order to pull out nonzero
elements of αi,j or β, there should be ‖d2‖ ≤ ‖d1‖, which
completes the proof.

However the line search is still too costly, because it has to
solve an optimization problem (7) at each step of changing
γ. In this paper we develop a practical heuristic to obtain
result subject to the budget constraint |β|0 = K. The ba-
sic idea is that, instead of changing γ to enforce the desired
sparsity of the result, we can change the problem to make it
indeed sparse, and ensure that a result with the desired spar-
sity can be produced with a high probability under a fixed
roughly chosen γ. If the intrinsic dimensionality of data in
XP is K′, we know that it requires at least K′ linearly in-
dependent factors whose linear combination can sufficiently
approximate every data example in XP . Therefore K′ offers
a lower-bound for the sparsity |β|0 = K of the result. If we
increase the lower bound K′, the obtained K is likely to be
increased. This explains why empirically we found it very
effective to control the sparsity K of result by changing the
intrinsic dimensionality K′ of data using principal compo-
nent analysis (PCA). The detailed steps are the following

1. Perform singular value decomposition (SVD) on the

unlabeled data

XP ≈ UΣV> (14)

where V = (v1, . . . ,vK′).

2. Project data into the K′ principal space

X̃P = XPV (15)

X̃C = XCV (16)

3. Replace XP and XC with X̃P and X̃C in problem (7),
and solve it to obtain β∗.

4. Retrieve the data examples from XC , whose corre-
sponding weights are ranked among the top K ele-
ments of β∗, and form the active set XA.

Note that we use the low-dimension data for data selection
only, while use the original full-dimension data for training
the classifier. In our experiments we found it effective to use
a simple linear relationship

K = ρK′ (17)

to control the sparsity, where ρ can be empirically estimated
from data (e.g., see Section 4). We simply choose the regu-
larization parameter γ among {0.001, 0.01, 0.1}×γmax. This
approach is computationally much cheaper than line search,
and is also cheaper than solving the original (7) due to the
reduced dimensionality of data. We note that a theoretical
linear relationship between the resultant sparsity K and the
data dimensionality K′ has been suggested by Donoho [4]
as a condition of equivalence between `0-norm and `1-norm
minimization. A detailed connection to this theoretical work
is not the purpose of the present paper, we will instead pro-
vide some empirical justification in our experiments.

4. EXPERIMENTS

4.1 Data and Experimental Settings
In this section we evaluate the proposed convex TED algo-

rithm for text categorization. Our empirical study was con-
ducted based on two real-world text corpora. Our first data
set is a subset of Newsgroup corpus, which contains 3970
documents with 8014 dimensional TFIDF features. This
data set covers four categories: ‘autos’, ‘motorcycles’, ‘base-
ball’, ‘hockey’, each with 988, 993, 992 and 997 documents
respectively. The other data set is a subset of the RCV1-v2
text data set, provided by Reuters and corrected by Lewis
et al. [9]. The data set contains the information of topics,
regions and industries for each document and a hierarchi-
cal structure for topics and industries. A set of 10000 doc-
uments is chosen for our experiments, including categories
‘C15’, ‘MCAT’, ‘GCAT’, and ‘CCAT’, each with 1826, 2477,
2999, and 4671 documents respectively. In this data set we
use 9705 dimensional TFIDF features.

We conduct one-against-all classification for each cate-
gory and thus treat the problem as binary classification,
i.e., y = {−1, 1}, where documents from the target category
are labeled as positive one, while those not belonging to this
category are labeled as negative one. In the one-against-all
setting, each binary classification task has unbalanced data,
i.e., 18% ∼ 25% examples are positive and the rest negative.
Because each classification task is unbalanced, classification



accuracy rate may not be suitable to measure the perfor-
mance. In the experiments we use the AUC score, i.e., area
under the Receiver Operating Characteristic (ROC) curve,
to measure the overall classification performance. Another
reason is that ROC curves use true positive rates and false
positive rates, which is closely related to precision and recall
commonly used in IR tasks.

In each run of our experiments, an active learning method
is applied to select a given number K of training examples,
K = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, then a classifier is
trained on these examples with their labels. The trained
classifier is then used to predict the class labels of the re-
maining examples, and an AUC score is computed based
on the results. In order to randomize the experiments, in
each run of experiments we restrict the training examples
to be selected from a random candidate set of 50% of the
total data. Therefore for each combination of active learn-
ing method and a number K, we compute the mean and
standard error based on 10 randomized experiments. In this
paper, we evaluate and compare five active learning meth-
ods,

• Random Sampling method uniformly selects exam-
ples as training data. We use this method as the base-
line for active learning.

• K-Means method performs K-Means clustering algo-
rithm on the data first, then selects the centroids of
each cluster as the training data. The number of clus-
ters is exact the number of training examples to be
selected.

• Simple Margin method is a method in [16]. This
method selects the example closest to the current de-
cision boundary of the classifier, which is a usual SVM
using the hinge loss.

• Sequential TED method, as described in Algorithm
1, which greedily selects the example which minimize
the loss.

• Convex TED method, as described in Algorithm 2,
is the new method proposed in this paper.

We note that all the methods use least-squares SVM (LSSVM)
as the base classification method, except the Simple Margin
method that uses hinge-loss SVM. In all the experiments we
fix the parameters as µ = 0.01 and γ = 0.1γmax.

4.2 Sparsity of Results
We first empirically illustrate some properties of our al-

gorithm in the aspect of achieving sparse results. Due to
the space limitation, all the results shown here are based on
the Newsgroup data. However similar phenomena can be
observed on the other data set as well. Figure 1 shows that
the achieved sparsity K can be controlled by either changing
the regularization parameter γ, or changing the dimension-
ality K′ of data as suggested in Section 3.4. However, as
suggested in Figure 1-(a), the resultant sparsity K has a
monotonic but nonlinear dependence on the parameter γ,
which makes the line search difficult to ensure the sparsity
budget. In contrast, as suggested by Figure 1-(b), we empir-
ically found the simple linear connection between K and the
data dimensionality K′ (in this case ρ = 1.61). This pro-
vides a hint for us to efficiently achieve the desired sparsity.

(a) (b)

Figure 1: Control the sparsity of optimization re-
sults: (a) complex non-linear dependence on γ vs.
(b) simple linear relationship with the data dimen-
sionality K′.

(a) (b)

Figure 2: Updates of β (30 dimensions in this case)
over iterations (a) K′ = 5 (b) K′ = 10.

In fact, since the examples are selected based on the ranking
of elements in β∗, we only require the achieved sparsity to
be approximately close to K. Therefore ρ does not have to
be very accurate. In our experiments we simply fix ρ = 1.

In the next, we use an example to show that our formu-
lation can indeed achieve sparse results across iterations of
Algorithm 2. For illustration purpose, we restrict the candi-
date set XC to be 30 random examples from the 3970 docu-
ments, therefore β is a 30-dimension vector of non-negative
numbers, which are initialized to be βj = 5, j = 1, . . . , 30.
As shown in Figure 2, in both cases of K′ = 5 and K′ = 10,
most of the elements in β vanish to zero quickly over it-
erations. Eventually only 2 and 5 elements survive to be
nonzero at the 30-th iteration. In general, we found the al-
gorithm locate the active set within hundreds of iterations
given many thousands of candidates.

4.3 Performance Evaluation
Newsgroup: We compute the AUC scores for each ex-

periments of a given method and a given K, and average
them over all the categories and random trials to obtain the
overall performance of each pair of method and K. The re-
sults are shown in Table 1 with a figure on the left and a
table showing the numbers on the right. A little bit sur-
prisingly, the K-Means approach only performs slightly bet-
ter than the Random Sampling approach. Sequential TED
exhibits performances better than K-Means and Random
Sampling, but worse than the Convex TED method. The
new algorithm produces very impressive results in this case:
classifiers trained on only 5 training examples give the AUC
score 90% in average, while Random Sampling needs almost
10 times of that training size to reach the same level of ac-
curacy.



K convex TED sequential TED K-Means Random Samp.
5 0.900± 0.012 0.793± 0.021 0.728± 0.004 0.714± 0.017
10 0.918± 0.008 0.852± 0.010 0.794± 0.013 0.769± 0.015
15 0.931± 0.005 0.884± 0.006 0.835± 0.015 0.805± 0.013
20 0.934± 0.005 0.894± 0.004 0.857± 0.017 0.838± 0.012
25 0.938± 0.003 0.902± 0.003 0.866± 0.017 0.860± 0.008
30 0.941± 0.003 0.914± 0.002 0.885± 0.014 0.874± 0.006
35 0.944± 0.003 0.927± 0.003 0.894± 0.010 0.887± 0.005
40 0.944± 0.004 0.935± 0.002 0.906± 0.009 0.901± 0.004
45 0.948± 0.004 0.942± 0.002 0.920± 0.007 0.909± 0.004
50 0.950± 0.004 0.947± 0.002 0.923± 0.005 0.918± 0.003

Table 1: Overall performance on Newsgroup data. Both of the figure and the table show the mean and the
standard error of AUC score over 10 random trials.

(a) ‘Autos’ (b) ‘Motorcycles’

(c) ‘Baseball’ (d) ‘Hockey’

Figure 3: Classification performance on different categories of Newsgroup data set. For category ‘Autos’, the
curve of Simple Margin cannot be completely plotted due to its very poor performance in this case.

Note that here we compare only the methods whose data
selection is label-independent. The Simple Margin method
selects the next data based on the current classifier, which
is trained on the previously seen labels of examples. There-
fore, for each category the method selects a different set of
training data that are largely non-overlapped, while those
data-independent methods select a common set of data for
training classifiers of all the categories. In order to put

the performance of each binary classifier in a comparable
ground, each learner is supposed to pick up the same num-
ber K of examples, which however makes the comparison
a bit unfair for the multi-category case, because then Sim-
ple Margin actually employs 4K (if no overlap) examples in
total while other methods use only K examples.

Nevertheless we can still make a comparison in the binary
classification case for each individual category, whose results



are plotted in Figure 3. For the 3 categories ‘Autos’, ‘Mo-
torcycles’ and ‘Baseball’, Convex TED method outperforms
the second best — Sequential TEC — by a large margin,
and performs similarly on the category ‘Hockey’. The Sim-
ple Margin method works surprisingly bad in this data set.
We conjecture that the method is trapped to find outlier
or untypical examples that are likely to stay close to the
boundary of classifiers. In contrast, the TED methods set
the optimization goal as finding data to well preserve the rest
of other data, and are thus unlikely to find those outliers.

RCV: The overall performances of different methods ex-
cept Simple Margin on the RCV data are presented in Ta-
ble 2. In this case the K-Means method performs very close
to the Sequential TED method, except for the case of K = 5
where the AUC of Sequential TED is 75.3% while that of
K-Means is 65.9%. The Convex TED method demonstrates
the best performance in all the cases when less than 40 ex-
amples are selected. Especially the advantage is notable
when K = 5, 10, 15 and 20. Furthermore, as shown in Fig-
ure 4 all the methods including Simple Margin are compared
on the bases of individual categories. We find that Simple
Margin performs quite good on the categories of ‘C15’ and
‘CCAT’, while very poor on the category ‘GCAT’. Sequential
TED and K-Means behave very closely. Random Sampling
shows fair performance except on ‘C15’. Convex TED out-
performs Sequential TED and exhibits good results in all
the cases, especially on the category ‘GCAT’ where Simple
Margin clearly fails.

Label-independent vs. Label-dependent: The ex-
periment results, especially regarding those of Convex TED
and Simple Margin methods, raise an interesting question:
what are the pros and cons of label-dependent/independent
active learning algorithms? We feel that label-independent
active learning, e.g., TED, tends to be somewhat more gen-
erative than discriminative, because it explores the distrib-
ution of unlabeled data and is less prone to untypical pat-
terns or outliers. Moreover, as we discussed already, label-
independent approaches seem to be cheaper for active learn-
ing with multiple categories, a topic rarely touched by the
previous research. In practice, label-independent active learn-
ing should be useful in the early stage when very little labels
are known. Our experiments showed that the advantage of
Convex TED is particularly prominent when the training
size is very small, the task involves multiple classes, or out-
liers are present. On the other hand, label-dependent active
learning is naturally compelling, because it uses the infor-
mation of labels. For example, the Simple Margin method
performed very well for the category ‘C15’, which turns out
to be the smallest category among the four. It could be un-
derstood that a label-dependent approach is good at finding
small categories, as the information of known labels helps to
push the classification boundary to shrink and be more fo-
cusing. However, these methods are usually too greedy, and
sometimes prone to untypical data, as what we observed on
the Newsgroup data. This analysis suggests a future direc-
tion of combining two kinds of approaches to make active
learning less greedy and meanwhile discriminative.

5. CONCLUSION
In this paper we developed a non-greedy active learning al-

gorithm by extending the framework of transductive experi-
mental design (TED). Unlike the previous sequential greedy
algorithm, the new formulation can simultaneously select

multiple data examples at a time with a global optimum.
We proposed an iterative algorithm that does not require
to apply any non-trivial optimization technique. Our ini-
tial experiments demonstrated that the non-greedy solution
outperforms the greedy approach, and produced good per-
formances for active text categorization, especially at the
initial phase. In the future, it is interesting to combine the
strengths of convex TED and label-dependent methods to
develop active learning approaches that are label-dependent
and also less greedy.
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