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ABSTRACT
The world wide web contains rich textual contents that are intercon-
nected via complex hyperlinks. This huge database violates the as-
sumption held by most of conventional statistical methods that each
web page is considered as an independent and identical sample. It
is thus difficult to apply traditional mining or learning methods for
solving web mining problems, e.g., web page classification, by ex-
ploiting both the content and the link structure. The research in this
direction has recently received considerable attention but are still in
an early stage. Though a few methods exploit both the link struc-
ture or the content information, some of them combine the only
authority information with the content information, and the others
first decompose the link structure into hub and authority features,
then apply them as additional document features. Being practically
attractive for its great simplicity, this paper aims to design an algo-
rithm that exploits both the content and linkage information, by car-
rying out a joint factorization on both the linkage adjacency matrix
and the document-term matrix, and derives a new representation
for web pages in a low-dimensional factor space, without explicitly
separating them as content, hub or authority factors. Further anal-
ysis can be performed based on the compact representation of web
pages. In the experiments, the proposed method is compared with
state-of-the-art methods and demonstrates an excellent accuracy in
hypertext classification on the WebKB and Cora benchmarks.

Categories and Subject Descriptors: H.3.3 [Information Sys-
tems]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Keywords: Link structure, Text content, Factor analysis, Matrix
factorization

1. INTRODUCTION
With the advance of the World Wide Web, more and more hyper-

text documents become available on the Web. Some examples of
such data include organizational and personal web pages (e.g, the
WebKB benchmark data set, which contains university web pages),
research papers (e.g., data in CiteSeer), online news articles, and
customer-generated media (e.g., blogs). Comparing to data in tra-
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ditional information management, in addition to content, these data
on the Web also contain links: e.g., hyperlinks from a student’s
homepage pointing to the homepage of her advisor, paper citations,
sources of a news article, comments of one blogger on posts from
another blogger, and so on. Performing information management
tasks on such structured data raises many new research challenges.
In the following discussion, we use the task of web page classifi-
cation as an illustrating example, while the techniques we develop
in later sections are applicable equally well to many other tasks in
information retrieval and data mining.

For the classification problem of web pages, a simple approach
is to treat web pages as independent documents. The advantage
of this approach is that many off-the-shelf classification tools can
be directly applied to the problem. However, this approach re-
lies only on the content of web pages and ignores the structure of
links among them. Link structures provide invaluable information
about properties of the documents as well as relationships among
them. For example, in the WebKB dataset, the link structure pro-
vides additional insights about the relationship among documents
(e.g., links often pointing from a student to her advisor or from
a faculty member to his projects). Since some links among these
documents imply the inter-dependence among the documents, the
usual i.i.d. (independent and identical distributed) assumption of
documents does not hold any more. From this point of view, the
traditional classification methods that ignore the link structure may
not be suitable.

On the other hand, a few studies, for example [25], rely solely on
link structures. It is however a very rare case that content informa-
tion can be ignorable. For example, in the Cora dataset, the content
of a research article abstract largely determines the category of the
article.

To improve the performance of web page classification, there-
fore, both link structure and content information should be taken
into consideration. To achieve this goal, a simple approach is to
convert one type of information to the other. For example, in spam
blog classification, Kolari et al. [13] concatenate outlink features
with the content features of the blog. In document classification,
Kurland and Lee [14] convert content similarity among documents
into weights of links. However, link and content information have
different properties. For example, a link is an actual piece of evi-
dence that represents an asymmetric relationship whereas the con-
tent similarity is usually defined conceptually for every pair of doc-
uments in a symmetric way. Therefore, directly converting one type
of information to the other usually degrades the quality of informa-
tion. On the other hand, there exist some studies, as we will discuss
in detail in related work, that consider link information and content
information separately and then combine them. We argue that such
an approach ignores the inherent consistency between link and con-



tent information and therefore fails to combine the two seamlessly.
Some work, such as [3], incorporates link information using co-
citation similarity, but this may not fully capture the global link
structure. In Figure 1, for example, web pages v6 and v7 co-cite
web page v8, implying that v6 and v7 are similar to each other.
In turns, v4 and v5 should be similar to each other, since v4 and
v5 cite similar web pages v6 and v7, respectively. But using co-
citation similarity, the similarity between v4 and v5 is zero without
considering other information.
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Figure 1: An example of link structure

In this paper, we propose a simple technique for analyzing
inter-connected documents, such as web pages, using factor anal-
ysis[18]. In the proposed technique, both content information and
link structures are seamlessly combined through a single set of la-
tent factors. Our model contains two components. The first compo-
nent captures the content information. This component has a form
similar to that of the latent topics in the Latent Semantic Indexing
(LSI) [8] in traditional information retrieval. That is, documents
are decomposed into latent topics/factors, which in turn are rep-
resented as term vectors. The second component captures the in-
formation contained in the underlying link structure, such as links
from homepages of students to those of faculty members. A fac-
tor can be loosely considered as a type of documents (e.g., those
homepages belonging to students). It is worth noting that we do
not explicitly define the semantic of a factor a priori. Instead, sim-
ilar to LSI, the factors are learned from the data. Traditional factor
analysis models the variables associated with entities through the
factors. However, in analysis of link structures, we need to model
the relationship of two ends of links, i.e., edges between vertex
pairs. Therefore, the model should involve factors of both vertices
of the edge. This is a key difference between traditional factor
analysis and our model. In our model, we connect two compo-
nents through a set of shared factors, that is, the latent factors in the
second component (for contents) are tied to the factors in the first
component (for links). By doing this, we search for a unified set
of latent factors that best explains both content and link structures
simultaneously and seamlessly.

In the formulation, we perform factor analysis based on matrix
factorization: solution to the first component is based on factoriz-
ing the term-document matrix derived from content features; solu-
tion to the second component is based on factorizing the adjacency
matrix derived from links. Because the two factorizations share
a common base, the discovered bases (latent factors) explain both
content information and link structures, and are then used in further
information management tasks such as classification.

This paper is organized as follows. Section 2 reviews related
work. Section 3 presents the proposed approach to analyze the web
page based on the combined information of links and content. Sec-
tion 4 extends the basic framework and a few variants for fine tune.
Section 5 shows the experiment results. Section 6 discusses the
details of this approach and Section 7 concludes.

2. RELATED WORK
In the content analysis part, our approach is closely related to

Latent Semantic Indexing (LSI) [8]. LSI maps documents into a
lower dimensional latent space. The latent space implicitly cap-
tures a large portion of information of documents, therefore it is
called the latent semantic space. The similarity between documents
could be defined by the dot products of the corresponding vectors
of documents in the latent space. Analysis tasks, such as classi-
fication, could be performed on the latent space. The commonly
used singular value decomposition (SVD) method ensures that the
data points in the latent space can optimally reconstruct the original
documents. Though our approach also uses latent space to repre-
sent web pages (documents), we consider the link structure as well
as the content of web pages.

In the link analysis approach, the framework of hubs and au-
thorities (HITS) [12] puts web page into two categories, hubs and
authorities. Using recursive notion, a hub is a web page with many
outgoing links to authorities, while an authority is a web page with
many incoming links from hubs. Instead of using two categories,
PageRank [17] uses a single category for the recursive notion, an
authority is a web page with many incoming links from authorities.
He et al. [9] propose a clustering algorithm for web document clus-
tering. The algorithm incorporates link structure and the co-citation
patterns. In the algorithm, all links are treated as undirected edge of
the link graph. The content information is only used for weighing
the links by the textual similarity of both ends of the links. Zhang
et al. [23] uses the undirected graph regularization framework for
document classification. Achlioptas et al[2] decompose the web
into hub and authority attributes then combine them with content.
Zhou et al. [25] and [24] propose a directed graph regularization
framework for semi-supervised learning. The framework combines
the hub and authority information of web pages. But it is difficult
to combine the content information into that framework. Our ap-
proach consider the content and the directed linkage between topics
of source and destination web pages in one step, which implies the
topic combines the information of web page as authorities and as
hubs in a single set of factors.

Cohn and Hofmann [6] construct the latent space from both con-
tent and link information, using content analysis based on proba-
bilistic LSI (PLSI) [10] and link analysis based on PHITS [5]. The
major difference between the approach of [6] (PLSI+PHITS) and
our approach is in the part of link analysis. In PLSI+PHITS, the
link is constructed with the linkage from the topic of the source
web page to the destination web page. In the model, the outgoing
links of the destination web page have no effect on the source web
page. In other words, the overall link structure is not utilized in
PHITS. In our approach, the link is constructed with the linkage
between the factor of the source web page and the factor of the des-
tination web page, instead of the destination web page itself. The
factor of the destination web page contains information of its out-
going links. In turn, such information is passed to the factor of the
source web page. As the result of matrix factorization, the factor
forms a factor graph, a miniature of the original graph, preserving
the major structure of the original graph.

Taskar et al. [19] propose relational Markov networks (RMNs)
for entity classification, by describing a conditional distribution of
entity classes given entity attributes and relationships. The model
was applied to web page classification, where web pages are enti-
ties and hyperlinks are treated as relationships. RMNs apply condi-
tional random fields to define a set of potential functions on cliques
of random variables, where the link structure provides hints to form
the cliques. However the model does not give an off-the-shelf so-
lution, because the success highly depends on the arts of designing



the potential functions. On the other hand, the inference for RMNs
is intractable and requires belief propagation.

The following are some work on combining documents and
links, but the methods are loosely related to our approach. The
experiments of [21] show that using terms from the linked docu-
ment improves the classification accuracy. Chakrabarti et al.[3] use
co-citation information in their classification model. Joachims et
al.[11] combine text kernels and co-citation kernels for classifica-
tion. Oh et al [16] use the Naive Bayesian frame to combine link
information with content.

3. OUR APPROACH
In this section we will first introduce a novel matrix factoriza-

tion method, which is more suitable than conventional matrix fac-
torization methods for link analysis. Then we will introduce our
approach that jointly factorizes the document-term matrix and link
matrix and obtains compact and highly indicative factors for repre-
senting documents or web pages.

3.1 Link Matrix Factorization
Suppose we have a directed graph G = (V, E), where the vertex

set V = {vi}n
i=1 represents the web pages and the edge set E rep-

resents the hyperlinks between web pages. Let A = {asd} denotes
the n×n adjacency matrix of G, which is also called the link matrix
in this paper. For a pair of vertices, vs and vd, let asd = 1 when
there is an edge from vs to vd, and asd = 0, otherwise. Note that
A is an asymmetric matrix, because hyperlinks are directed.

Most machine learning algorithms assume a feature-vector rep-
resentation of instances. For web page classification, however, the
link graph does not readily give such a vector representation for
web pages. If one directly uses each row or column of A for the job,
she will suffer a very high computational cost because the dimen-
sionality equals to the number of web pages. On the other hand, it
will produces a poor classification accuracy (see our experiments
in Section 5), because A is extremely sparse1.

The idea of link matrix factorization is to derive a high-quality
feature representation Z of web pages based on analyzing the link
matrix A, where Z is an n × l matrix, with each row being the l-
dimensional feature vector of a web page. The new representation
of web pages captures the principal factors of the link structure and
makes further processing more efficient.

One may use a method similar to LSI, to apply the well-known
principal component analysis (PCA) for deriving Z from A. The
corresponding optimization problem 2 is

min
Z,U

‖A− ZU>‖2
F + γ‖U‖2

F (1)

where γ is a small positive number, U is an l×n matrix, and ‖ · ‖F

is the Frobenius norm. The optimization aims to approximate A by
ZU>, a product of two low-rank matrices, with a regularization on
U . In the end, the i-th row vector of Z can be thought as the hub
feature vector of vertex vi, and the row vector of U can be thought
as the authority features. A link generation model proposed in [2] is
similar to the PCA approach. Since A is a nonnegative matrix here,
one can also consider to put nonnegative constraints on U and Z,
which produces an algorithm similar to PLSA [10] and NMF [20].

1Due to the sparsity of A, links from two similar pages may not
share any common target pages, which makes them to appear “dis-
similar”. However the two pages may be indirectly linked to many
common pages via their neighbors.
2Another equivalent form is minZ,U ‖A− ZU>‖2

F , s. t. U>U =
I . The solution Z is identical subject to a scaling factor.

However, despite its popularity in matrix analysis, PCA (or other
similar methods like PLSA) is restrictive for link matrix factoriza-
tion. The major problem is that, PCA ignores the fact that the rows
and columns of A are indexed by exactly the same set of objects
(i.e., web pages). The approximating matrix Ã = ZU> shows no
evidence that links are within the same set of objects. To see the
drawback, let’s consider a link transitivity situation vi → vs → vj ,
where page i is linked to page s which itself is linked to page j.
Since Ã = ZU> treats A as links from web pages {vi} to a dif-
ferent set of objects, let it be denoted by {oi}, Ã = ZU> actually
splits an “linked” object os from vs and breaks down the link path
into two parts vi → os and vs → oj . This is obviously a miss
interpretation to the original link path.

To overcome the problem of PCA, in this paper we suggest to
use a different factorization:

min
Z,U

‖A− ZUZ>‖2
F + γ‖U‖2

F (2)

where U is an l × l full matrix. Note that U is not symmetric, thus
ZUZ> produces an asymmetric matrix, which is the case of A.
Again, each row vector of Z corresponds to a feature vector of a
web pages. The new approximating form Ã = ZUZ> puts a clear
meaning that the links are between the same set of objects, repre-
sented by features Z. The factor model actually maps each vertex,
vi, into a vector zi = {zi,k; 1 ≤ k ≤ l} in the Rl space. We call
the Rl space the factor space. Then, {zi} encodes the information
of incoming and outgoing connectivity of vertices {vi}. The fac-
tor loadings, U , explain how these observed connections happened
based on {zi}. Once we have the vector zi, we can use many tra-
ditional classification methods (such as SVMs) or clustering tools
(such as K-Means) to perform the analysis.

Illustration Based on a Synthetic Problem
To further illustrate the advantages of the proposed link matrix fac-
torization Eq. (2), let us consider the graph in Figure 1. Given
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Figure 2: Summarize Figure 1 with a factor graph

these observations, we can summarize the graph by grouping as
factor graph depicted in Figure 2. In the next we preform the two
factorization methods Eq. (2) and Eq. (1) on this link matrix. A
good low-rank representation should reveal the structure of the fac-
tor graph.

First we try PCA-like decomposition, solving Eq. (1) and
obtaining
Z = U =266666666666666664

1. 1. 0 0 0
0 0 −.6 −.7 .1
0 0 .0 .6 −.0
0 0 .8 −.4 .3
0 0 .2 −.2 −.9
.7 .7 0 0 0
.7 .7 0 0 0
0 0 0 0 0

377777777777777775

266666666666666664

0 0 0 0 0
.5 −.5 0 0 0
.5 −.5 0 0 0
0 0 −0.6 −.7 .1
0 0 .0 .6 −.0
0 0 .8 −.4 .3
0 0 .2 −.2 −.9
.7 .7 0 0 0

377777777777777775
We can see that the row vectors of v6 and v7 are the same in Z,
indicating that v6 and v7 have the same hub attributes. The row



vectors of v2 and v3 are the same in U , indicating that v2 and
v3 have the same authority attributes. It is not clear to see the
similarity between v4 and v5, because their inlinks (and outlinks)
are different.

Then, we factorize A by ZUZ> via solving Eq. (2), and obtain
the results
Z = U =266666666666666664

−.8 −.5 .3 −.1 −.0
−.0 .4 .6 −.1 −.4
−.0 .4 .6 −.1 −.4
.3 −.2 .3 −.4 .3
.3 −.2 .3 −.4 .3
−.4 .5 .0 −.2 .6
−.4 .5 .0 −.2 .6
−.1 .1 −.4 −.8 −.4

377777777777777775

2666666664

−.1 −.2 −.4 .6 .7
.2 −.5 −.5 −.5 .0
.1 .1 .4 −.4 .3
.1 −.2 −.0 .3 −.1
−.3 .3 −.5 −.4 −.2

3777777775

The resultant Z is very consistent with the clustering structure
of vertices: the row vectors of v2 and v3 are the same, those
of v4 and v5 are the same, those of v6 and v7 are the same.
Even interestingly, if we add constraints to ensure Z and U be
nonnegative, we have
Z = U =266666666666666664

1. 0 0 0 0
0 .9 0 0 0
0 .9 0 0 0
0 0 .7 0 0
0 0 .7 0 0
0 0 0 .9 0
0 0 0 .9 0
0 0 0 0 1.

377777777777777775

2666666664

0 1. 0 0 0
0 0 .7 0 0
0 0 0 .7 0
0 0 0 0 1.
0 0 0 0 0

3777777775

which clearly tells the assignment of vertices to clusters from Z
and the links of factor graph from U . When the interpretability is
not critical in some tasks, for example, classification, we found that
it achieves better accuracies without the nonnegative constraints.

Given our above analysis, it is clear that the factorization ZUZ>

is more expressive than ZU> in representing the link matrix A.

3.2 Content Matrix Factorization
Now let us consider the content information on the vertices. To

combine the link information and content information, we want to
use the same latent space to approximate the content as the latent
space for the links. Using the bag-of-words approach, we denote
the content of web pages by an n×m matrix C, each of whose rows
represents a document, each column represents a keyword, where
m is the number of keywords. Like the latent semantic indexing
(LSI) [8], the l-dimensional latent space for words is denoted by an
m × l matrix V . Therefore, we use ZV > to approximate matrix
C,

min
V,Z

‖C − ZV >‖2
F + β‖V ‖2

F , (3)

where β is a small positive number, β‖V ‖2
F serves as a regulariza-

tion term to improve the robustness.

3.3 Joint Link-Content Matrix Factorization
There are many ways to employ both the content and link infor-

mation for web page classification. Our idea in this paper is not to
simply combine them, but rather to fuse them into a single, consis-
tent, and compact feature representation. To achieve this goal, we
solve the following problem,

min
U,V,Z

n
J (U, V, Z)

def
= ‖A− ZUZ>‖2

F +

α‖C − ZV >‖2
F + γ‖U‖2

F + β‖V ‖2
F

o
.

(4)

Eq. (4) is the joined matrix factorization of A and C with regular-

ization. The new representation Z is ensured to capture both the
structures of the link matrix A and the content matrix C. Once
we find the optimal Z, we can apply the traditional classification
or clustering methods on vectorial data Z. The relationship among
these matrices can be depicted as Figure 3.

A Y C

U Z V

Figure 3: Relationship among the matrices. Node Y is the tar-
get of classification.

Eq. (4) can be solved using gradient methods, such as the conju-
gate gradient method and quasi-Newton methods. Then main com-
putation of gradient methods is evaluating the object function J
and its gradients against variables,

∂J
∂U

=
“
Z>ZUZ>Z − Z>AZ

”
+ γU,

∂J
∂V

=α
“
V Z>Z − C>Z

”
+ βV,

∂J
∂Z

=
“
ZU>Z>ZU + ZUZ>ZU> −A>ZU −AZU>

”
+ α

“
ZV >V − CV

”
.

Because of the sparsity of A, the computational complexity of
multiplication of A and Z is O(µAl), where µA is the number of
nonzero entries in A. Similarly, the computational complexity of
C>Z and CV is O(µC l), where µC is the number of nonzero
entries in C. The computational complexity of the rest multiplica-
tions in the gradient computation is O(nl2). Therefore, the total
computational complexity in one iteration is O(µAl + µC l + nl2).
The number of links and the number of words in a web page are
relatively small comparing to the number of web pages, and are al-
most constant as the number of web pages/documents increases, i.e.
µA = O(n) and µC = O(n). Therefore, theoretically the compu-
tation time is almost linear to the number of web pages/documents,
n.

4. SUPERVISED MATRIX FACTORIZA-
TION

Consider a web page classification problem. We can solve
Eq. (4) to obtain Z as Section 3, then use a traditional classifier
to perform classification. However, this approach does not take
data labels into account in the first step. Believing that using data
labels improves the accuracy by obtaining a better Z for the clas-
sification, we consider to use the data labels to guide the matrix
factorization, called supervised matrix factorization [22]. Because
some data used in the matrix factorization have no label informa-
tion, the supervised matrix factorization falls into the category of
semi-supervised learning.

Let C be the set of classes. For simplicity, we first consider bi-
nary class problem, i.e. C = {−1, 1}. Assume we know the la-
bels {yi} for vertices in T ⊂ V . We want to find a hypothesis
h : V → R, such that we assign vi to 1 when h(vi) ≥ 0, −1 oth-
erwise. We assume a transform from the latent space to R is linear,
i.e.

h(vi) = w>φ(vi) + b = w>zi + b, (5)



School course dept. faculty other project staff student total
Cornell 44 1 34 581 18 21 128 827
Texas 36 1 46 561 20 2 148 814

Washington 77 1 30 907 18 10 123 1166
Wisconsin 85 0 38 894 25 12 156 1210

Table 1: Dataset of WebKB

where w and b are parameters to estimate. Here, w is the norm
of the decision boundary. Similar to Support Vector Machines
(SVMs) [7], we can use the hinge loss to measure the loss,X

i:vi∈T

[1− yih(vi)]+ ,

where [x]+ is x if x ≥ 0, 0 if x < 0. However, the hinge loss
is not smooth at the hinge point, which makes it difficult to apply
gradient methods on the problem. To overcome the difficulty, we
use a smoothed version of hinge loss for each data point,

g(yih(vi)), (6)

where

g(x) =

8><>:
0 when x ≥ 2,

1− x when x ≤ 0,
1
4
(x− 2)2 when 0 < x < 2.

We reduce a multiclass problem into multiple binary ones. One
simple scheme of reduction is the one-against-rest coding scheme.
In the one-against-rest scheme, we assign a label vector for each
class label. The element of a label vector is 1 if the data point be-
longs the corresponding class, −1, if the data point does not belong
the corresponding class, 0, if the data point is not labeled. Let Y be
the label matrix, each column of which is a label vector. Therefore,
Y is a matrix of n× c, where c is the number of classes, |C|. Then
the values of Eq. (5) form a matrix

H = ZW> + 1b>, (7)

where 1 is a vector of size n, whose elements are all one, W is a
c × l parameter matrix, and b is a parameter vector of size c. The
total loss is proportional to the sum of Eq. (6) over all labeled data
points and the classes,

LY (W,b, Z) = λ
X

i:vi∈T ,j∈C

g(YijHij),

where λ is the parameter to scale the term.
To derive a robust solution, we also use Tikhonov regularization

for W ,

ΩW (W ) =
ν

2
‖W‖2

F ,

where ν is the parameter to scale the term.
Then the supervised matrix factorization problem becomes

min
U,V,Z,W,b

Js(U, V, Z, W,b) (8)

where

Js(U, V, Z, W,b) = J (U, V, Z) + LY (W,b, Z) + ΩW (W ).

We can also use gradient methods to solve the problem of Eq. (8).

The gradients are

∂Js

∂U
=

∂J
∂U

,

∂Js

∂V
=

∂J
∂V

,

∂Js

∂Z
=

∂J
∂Z

+ λGW,

∂Js

∂W
=λG>Z + νW,

∂Js

∂b
=λG>1,

where G is an n×c matrix, whose ik-th element is Yikg′(YikHik),
and

g′(x) =

8><>:
0 when x ≥ 2,

−1 when x ≤ 0,
1
2
(x− 2) when 0 < x < 2.

Once we obtain w, b, and Z, we can apply h on the vertices with
unknown class labels, or apply traditional classification algorithms
on Z to get the classification results.

5. EXPERIMENTS

5.1 Data Description
In this section, we perform classification on two datasets, to

demonstrate the our approach. The two datasets are the WebKB
data set[1] and the Cora data set [15]. The WebKB data set con-
sists of about 6000 web pages from computer science departments
of four schools (Cornell, Texas, Washington, and Wisconsin). The
web pages are classified into seven categories. The numbers of
pages in each category are shown in Table 1. The Cora data set
consists of the abstracts and references of about 34,000 computer
science research papers. We use part of them to categorize into
one of subfields of data structure (DS), hardware and architecture
(HA), machine learning (ML), and programing language (PL). We
remove those articles without reference to other articles in the set.
The number of papers and the number of subfields in each area are
shown in Table 2.

area # of papers # of subfields
Data structure (DS) 751 9

Hardware and architecture (HA) 400 7
Machine learning (ML) 1617 7

Programing language (PL) 1575 9

Table 2: Dataset of Cora

5.2 Methods
The task of the experiments is to classify the data based on their

content information and/or link structure. We use the following
methods:
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SVM on content
SVM on link

SVM on link-content

Directed graph reg.
PLSI+PHITS

link-content MF

link-content sup. MF

method Cornell Texas Washington Wisconsin
SVM on content 81.00± 0.90 77.00± 0.60 85.20± 0.90 84.30± 0.80
SVM on links 70.10± 0.80 75.80± 1.20 80.50± 0.30 74.90± 1.00
SVM on link-content 80.00± 0.80 78.30± 1.00 85.20± 0.70 84.00± 0.90
Directed graph regularization 89.47± 1.41 91.28± 0.75 91.08± 0.51 89.26± 0.45
PLSI+PHITS 80.74± 0.88 76.15± 1.29 85.12± 0.37 83.75± 0.87
link-content MF 93.50± 0.80 96.20± 0.50 93.60± 0.50 92.60± 0.60
link-content sup. MF 93.80± 0.70 97.07± 1.11 93.70± 0.60 93.00± 0.30

Table 3: Classification accuracy (mean ± std-err %) on WebKB data set

• SVM on content We apply support vector machines (SVM)
on the content of documents. The features are the bag-of-
words and all word are stemmed. This method ignores link
structure in the data. Linear SVM is used. The regulariza-
tion parameter of SVM is selected using the cross-validation
method. The implementation of SVM used in the experi-
ments is libSVM[4].

• SVM on links We treat links as the features of each docu-
ment, i.e. the i-th feature is link-to-pagei. We apply SVM on
link features. This method uses link information, but not the
link structure.

• SVM on link-content We combine the features of the above
two methods. We use different weights for these two set
of features. The weights are also selected using cross-
validation.

• Directed graph regularization This method is described in
[25] and [24]. This method is solely based on link structure.

• PLSI+PHITS This method is described in [6]. This method
combines text content information and link structure for
analysis. The PHITS algorithm is in spirit similar to Eq.1,
with an additional nonnegative constraint. It models the out-
going and in-coming structures separately.

• Link-content MF This is our approach of matrix factoriza-
tion described in Section 3. We use 50 latent factors for Z.
After we compute Z, we train a linear SVM using Z as the
feature vectors, then apply SVM on testing portion of Z to
obtain the final result, because of the multiclass output.

• Link-content sup. MF This method is our approach of the
supervised matrix factorization in Section 4. We use 50 latent

factors for Z. After we compute Z, we train a linear SVM
on the training portion of Z, then apply SVM on testing por-
tion of Z to obtain the final result, because of the multiclass
output.

We randomly split data into five folds and repeat the experiment
for five times, for each time we use one fold for test, four other
folds for training. During the training process, we use the cross-
validation to select all model parameters. We measure the results
by the classification accuracy, i.e., the percentage of the number
of correct classified documents in the entire data set. The results
are shown as the average classification accuracies and it standard
deviation over the five repeats.

5.3 Results
The average classification accuracies for the WebKB data set are

shown in Table 3. For this task, the accuracies of SVM on links
are worse than that of SVM on content. But the directed graph
regularization, which is also based on link alone, achieves a much
higher accuracy. This implies that the link structure plays an im-
portant role in the classification of this dataset, but individual links
in a web page give little information. The combination of link and
content using SVM achieves similar accuracy as that of SVM on
content alone, which confirms individual links in a web page give
little information. Since our approach consider the link structure
as well as the content information, our two methods give results
a highest accuracies among these approaches. The difference be-
tween the results of our two methods is not significant. However in
the experiments below, we show the difference between them.

The classification accuracies for the Cora data set are shown in
Table 4. In this experiment, the accuracies of SVM on the combi-
nation of links and content are higher than either SVM on content
or SVM on links. This indicates both content and links are infor-



 45

 50

 55

 60

 65

 70

 75

 80

PLMLHADS

a
c
c
u
ra

c
y
 (

%
)

dataset

SVM on content
SVM on link

SVM on link-content

Directed graph reg.
PLSI+PHITS

link-content MF

link-content sup. MF

method DS HA ML PL
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SVM on link-content 63.70± 1.50 70.50± 2.20 70.56± 0.80 62.35± 1.00
Directed graph regularization 46.07± 0.82 65.50± 2.30 59.37± 0.96 56.06± 0.84
PLSI+PHITS 53.60± 1.78 67.40± 1.48 67.51± 1.13 57.45± 0.68
link-content MF 61.00± 0.70 74.20± 1.20 77.50± 0.80 62.50± 0.80
link-content sup. MF 69.38± 1.80 74.20± 0.70 78.70± 0.90 68.76± 1.32

Table 4: Classification accuracy (mean ± std-err %) on Cora data set

mative for classifying the articles into subfields. The method of
directed graph regularization does not perform as good as SVM on
link-content, which confirms the importance of the article content
in this task. Though our method of link-content matrix factoriza-
tion perform slightly better than other methods, our method of link-
content supervised matrix factorization outperform significantly.

5.4 The Number of Factors
As we discussed in Section 3, the computational complexity of

each iteration for solving the optimization problem is quadratic to
the number of factors. We perform experiments to study how the
number of factors affects the accuracy of predication. We use dif-
ferent numbers of factors for the Cornell data of WebKB data set
and the machine learning (ML) data of Cora data set. The result
shown in Figure 4(a) and 4(b). The figures show that the accuracy
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Figure 4: Accuracy vs number of factors

increases as the number of factors increases. It is a different con-
cept from choosing the “optimal” number of clusters in clustering
application. It is how much information to represent in the latent
variables. We have considered the regularization over the factors,

which avoids the overfit problem for a large number of factors. To
choose of the number of factors, we need to consider the trade-off
between the accuracy and the computation time, which is quadratic
to the number of factors.

The difference between the method of matrix factorization and
that of supervised one decreases as the number of factors increases.
This indicates that the usefulness of supervised matrix factorization
at lower number of factors.

6. DISCUSSIONS
The loss functions LA in Eq. (2) and LC in Eq. (3) use squared

loss due to computationally convenience. Actually, squared loss
does not precisely describe the underlying noise model, because
the weights of adjacency matrix can only take nonnegative val-
ues, in our case, zero or one only, and the components of con-
tent matrix C can only take nonnegative integers. Therefore, we
can apply other types of loss, such as hinge loss or smoothed
hinge loss, e.g. LA(U, Z) = µh(A, ZUZ>), where h(A, B) =P

i,j [1−AijBij ]+ .
In our paper, we mainly discuss the application of classification.

A entry of matrix Z means the relationship of a web page and a
factor. The values of the entries are the weights of linear model,
instead of the probabilities of web pages belonging to latent top-
ics. Therefore, we allow the components take any possible real val-
ues. When we come to the clustering application, we can use this
model to find Z, then apply K-means to partition the web pages
into clusters. Actually, we can use the idea of nonnegative matrix
factorization for clustering [20] to directly cluster web pages. As
the example with nonnegative constraints shown in Section 3, we
represent each cluster by a latent topic, i.e. the dimensionality of
the latent space is set to the number of clusters we want. Then the



problem of Eq. (4) becomes

min
U,V,Z

J (U, V, Z), s.t.Z ≥ 0. (9)

Solving Eq. (9), we can obtain more interpretable results, which
could be used for clustering.

7. CONCLUSIONS
In this paper, we study the problem of how to combine the infor-

mation of content and links for web page analysis, mainly on classi-
fication application. We propose a simple approach using factors to
model the text content and link structure of web pages/documents.
The directed links are generated from the linear combination of
linkage of between source and destination factors. By sharing fac-
tors between text content and link structure, it is easy to combine
both the content information and link structure. Our experiments
show our approach is effective for classification. We also discuss
an extension for clustering application.
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