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Abstract

This paper introduces a new method for semi-supervised learning on high dimen-
sional nonlinear manifolds, which includes a phase of unsupervised basis learning
and a phase of supervised function learning. The learned bases provide a set of
anchor points to form a local coordinate system, such that each data pointx on
the manifold can be locally approximated by a linear combination of its nearby
anchor points, and the linear weights become its local coordinate coding. We
show that a high dimensional nonlinear function can be approximated by a global
linear function with respect to this coding scheme, and the approximation quality
is ensured by the locality of such coding. The method turns a difficult nonlinear
learning problem into a simple global linear learning problem, which overcomes
some drawbacks of traditional local learning methods.

1 Introduction

Consider the problem of learning a nonlinear functionf(x) on a high dimensional spacex ∈ Rd.
We are given a set of labeled data(x1, y1), . . . , (xn, yn) drawn from an unknown underlying distrib-
ution. Moreover, assume that we observe a set of unlabeled datax ∈ Rd from the same distribution.
If the dimensionalityd is large compared ton, then the traditional statistical theory predicts over-
fitting due to the so called “curse of dimensionality”. One intuitive argument for this effect is that
when the dimensionality becomes larger, pairwise distances between two similar data points become
larger as well. Therefore one needs more data points to adequately fill in the empty space. However,
for many real problems with high dimensional data, we do not observe this so-called curse of di-
mensionality. This is because although data are physically represented in a high-dimensional space,
they often lie on a manifold which has a much smaller intrinsic dimensionality.

This paper proposes a new method that can take advantage of the manifold geometric structure
to learn a nonlinear function in high dimension. The main idea is to locally embed points on the
manifold into a lower dimensional space, expressed as coordinates with respect to a set of anchor
points. Our main observation is simple but very important: we show that a nonlinear function on the
manifold can be effectively approximated by a linear function with such an coding under appropriate
localization conditions. Therefore using Local Coordinate Coding, we turn a very difficult high
dimensional nonlinear learning problem into a much simpler linear learning problem, which has
been extensively studied in the literature. This idea may also be considered as a high dimensional
generalization of low dimensional local smoothing methods in the traditional statistical literature.

2 Local Coordinate Coding

We are interested in learning a smooth functionf(x) defined on a high dimensional spaceRd. Let
‖ · ‖ be a norm onRd. Although we do not restrict to any specific norm, in practice, one often
employs the Euclidean norm (2-norm):‖x‖ = ‖x‖2 =

√
x2

1 + · · ·+ x2
d.
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Definition 2.1 (Lipschitz Smoothness)A functionf(x) on Rd is (α, β, p)-Lipschitz smooth with
respect to a norm‖ · ‖ if |f(x′) − f(x)| ≤ α‖x − x′‖ and |f(x′) − f(x) − ∇f(x)>(x′ − x)| ≤
β‖x− x′‖1+p, where we assumeα, β > 0 andp ∈ (0, 1].

Note that if the Hessian off(x) exists, then we may takep = 1. Learning an arbitrary Lipschitz
smooth function onRd can be difficult due to the curse of dimensionality. That is, the number
of samples required to characterize such a functionf(x) can be exponential ind. However, in
many practical applications, one often observe that the data we are interested in approximately lie
on a manifoldM which is embedded intoRd. Although d is large, the intrinsic dimensionality
of M can be much smaller. Therefore if we are only interested in learningf(x) onM, then the
complexity should depend on the intrinsic dimensionality ofM instead ofd. In this paper, we
approach this problem by introducing the idea of localized coordinate coding. The formal definition
of (non-localized) coordinate coding is given below, where we represent a point inRd by a linear
combination of a set of “anchor points”. Later we show it is sufficient to choose a set of “anchor
points” with cardinality depending on the intrinsic dimensionality of the manifold rather thand.

Definition 2.2 (Coordinate Coding) A coordinate coding is a pair(γ, C), whereC ⊂ Rd is a set
of anchor points, andγ is a map ofx ∈ Rd to [γv(x)]v∈C ∈ R|C| such that

∑
v γv(x) = 1. It

induces the following physical approximation ofx in Rd: γ(x) =
∑

v∈C γv(x)v. Moreover, for all

x ∈ Rd, we define the corresponding coding norm as‖x‖γ =
(∑

v∈C γv(x)2
)1/2

.

The quantity‖x‖γ will become useful in our learning theory analysis. The condition
∑

v γv(x) = 1
follows from the shift-invariance requirement, which means that the coding should remain the same
if we use a different origin of theRd coordinate system for representing data points. It can be
shown (see the appendix file accompanying the submission) that the mapx →

∑
v∈C γv(x)v is

invariant under any shift of the origin for representing data points inRd if and only if
∑

v γv(x) =
1. The importance of the coordinate coding concept is that if a coordinate coding is sufficiently
localized, then a nonlinear function can be approximate by a linear function with respect to the
coding. This critical observation, illustrate in the following linearization lemma, is the foundation
of our approach. Due to the space limitation, all proofs are left to the appendix that accompanies the
submission.

Lemma 2.1 (Linearization) Let (γ, C) be an arbitrary coordinate coding onRd. Let f be an
(α, β, p)-Lipschitz smooth function. We have for allx ∈ Rd:∣∣∣∣∣f(x)−

∑
v∈C

γv(x)f(v)

∣∣∣∣∣ ≤ α ‖x− γ(x)‖+ β
∑
v∈C

|γv(x)| ‖v − γ(x)‖1+p
.

To understand this result, we note that on the left hand side, a nonlinear functionf(x) in Rd is ap-
proximated by a linear function

∑
v∈C γv(x)f(v) with respect to the codingγ(x), where[f(v)]v∈C

is the set of coefficients to be estimated from data. The quality of this approximation is bounded by
the right hand side, which has two terms: the first term‖x − γ(x)‖ meansx should be close to its
physical approximationγ(x), and the second term means that the coding should be localized. The
quality of a codingγ with respect toC can be measured by the right hand side. For convenience,
we introduce the following definition, which measures the locality of a coding.

Definition 2.3 (Localization Measure) Givenα, β, p, and coding(γ, C), we define

Qα,β,p(γ, C) = Ex

[
α‖x− γ(x)‖+ β

∑
v∈C

|γv(x)| ‖v − γ(x)‖1+p

]
.

Observe that inQα,β,p, α, β, p may be regarded as tuning parameters; we may also simply pick
α = β = p = 1. Since the quality functionQα,β,p(γ, C) only depends on unlabeled data, in
principle, we can find[γ, C] by optimizing this quality using unlabeled data. Later, we will consider
simplifications of this objective function that are easier to compute.

Next we show that if the data lie on a manifold, then the complexity of local coordinate coding
depends on the intrinsic manifold dimensionality instead ofd. We first define manifold and its
intrinsic dimensionality.
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Definition 2.4 (Manifold) A subsetM ⊂ Rd is called ap-smooth (p > 0) manifold with intrinsic
dimensionalitym = m(M) if there exists a constantcp(M) such that given anyx ∈ M, there

existsm vectorsv1(x), . . . , vm(x) ∈ Rd so that∀x′ ∈ M: infγ∈Rm

∥∥∥x′ − x−
∑m

j=1 γjvj(x)
∥∥∥ ≤

cp(M)‖x′ − x‖1+p.

This definition is quite intuitive. The smooth manifold structure implies that one can approximate
a point inM effectively using local coordinate coding. Note that for a typical manifold with well-
defined curvature, we can takep = 1.

Definition 2.5 (Covering Number) Given any subsetM ⊂ Rd, and ε > 0. The covering
number, denoted asN (ε,M), is the smallest cardinality of anε-cover C ⊂ M. That is,
supx∈M infv∈C ‖x− v‖ ≤ ε.

For a compact manifold with intrinsic dimensionalitym, there exists a constantc(M) such that its
covering number is bounded byN (ε,M) ≤ c(M)ε−m. The following result shows that there exists
a local coordinate coding to a set of anchor pointsC of cardinalityO(m(M)N (ε,M)) such that
any(α, β, p)-Lipschitz smooth function can be linearly approximated using local coordinate coding
up to the accuracyO(

√
m(M)ε1+p).

Theorem 2.1 (Manifold Coding) If the data pointsx lie on a compactp-smooth manifoldM, and
the norm is defined as‖x‖ = (x>Ax)1/2 for some positive definite matrixA. Then given anyε > 0,
there exist anchor pointsC ⊂M and codingγ such that

|C| ≤ (1+m(M))N (ε,M), Qα,β,p(γ, C) ≤ [αcp(M)+(1+
√

m(M)+21+p
√

m(M))β] ε1+p.

Moreover, for allx ∈M, we have‖x‖2γ ≤ 1 + (1 +
√

m(M))2.

The approximation result in Theorem 2.1 means that the complexity of linearization in Lemma 2.1
depends only on the intrinsic dimensionm(M) of M instead ofd. Although this result is proved
for manifolds, it is important to observe that the coordinate coding method proposed in this paper
does not require the data to lie precisely on a manifold, and it does not require knowingm(M). In
fact, similar results hold even when the data only approximately lie on a manifold.

In the next section, we characterize the learning complexity of the local coordinate coding method.
It implies that linear prediction methods can be used to effectively learn nonlinear functions on
a manifold. The nonlinearity is fully captured by the coordinate coding mapγ (which can be a
nonlinear function). This approach has some great advantages because the problem of finding local
coordinate coding is much simpler than direct nonlinear learning:

• Learning(γ, C) only requires unlabeled data, and the number of unlabeled data can be
significantly more than the number of labeled data. This step also prevents overfitting with
respect to labeled data.

• In practice, we do not have to find the optimal coding because the coordinates are merely
features for linear supervised learning. This significantly simplifies the optimization prob-
lem. Consequently, it is more robust than some standard approaches to nonlinear learning
that direct optimize nonlinear functions on labeled data (e.g., neural networks).

3 Learning Theory

In machine learning, we minimize the expected lossEx,yφ(f(x), y) with respect to the underlying
distribution within a function classf(x) ∈ F . In this paper, we are interested in the function class
Fα,β,p = {f(x) : (α, β, p)− Lipschitz smooth function inRd}.
The local coordinate coding method considers a linear approximation of functions inFα,β,p on the
data manifold. Given a local coordinate coding scheme(γ, C), we approximate eachf(x) ∈ Fa

α,β,p

by f(x) ≈ fγ,C(ŵ, x) =
∑

v∈C ŵvγv(x), where we estimate the coefficients using ridge regression
as:

[ŵv] = arg min
[wv ]

[
n∑

i=1

φ (fγ,C(w, xi), yi) + λ
∑
v∈C

(wv − g(v))2
]

, (1)
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whereg(v) is an arbitrary function assumed to be pre-fixed. In the Bayesian interpretation, this
can be regarded as the prior mean for the weights[wv]v∈C . The default values ofg(v) are simply
g(v) ≡ 0. Given a loss functionφ(p, y), let φ′1(p, y) = ∂φ(p, y)/∂p. For simplicity, in this paper
we only consider convex Lipschitz loss function, where|φ′1(p, y)| ≤ B. This includes the standard
classification loss functions such as logistic regression and SVM (hinge loss), both withB = 1.

Theorem 3.1 (Generalization Bound)Supposeφ(p, y) is Lipschitz: |φ′1(p, y)| ≤ B. Consider
coordinate coding(γ, C), and the estimation method (1) with random training examplesSn =
{(x1, y1), . . . , (xn, yn)}. Then the expected generalization error satisfies the inequality:

ESn Ex,yφ(fγ,C(ŵ, x), y)

≤ inf
f∈Fα,β,p

[
Ex,yφ (f(x), y) + λ

∑
v∈C

(f(v)− g(v))2
]

+
B2

2λn
Ex‖x‖2γ + BQα,β,p(γ, C).

We may choose the regularization parameterλ that optimizes the bound in Theorem 3.1.
Moreover, if we pick g(v) ≡ 0, and find (γ, C) at someε > 0, then Theorem 2.1 im-
plies the following simplified generalization bound for anyf ∈ Fα,β,p such that|f(x)| =

O(1): Ex,yφ (f(x), y) + O
[√

ε−m(M)/n + ε1+p
]
. By optimizing overε, we obtain a bound:

Ex,yφ (f(x), y) + O(n−(1+p)/(2+2p+m(M))).

By combining Theorem 2.1 and Theorem 3.1, we can immediately obtain the following simple
consistency result. It shows that the algorithm can learn an arbitrary nonlinear function on manifold
whenn → ∞. Note that Theorem 2.1 implies that the convergence only depends on the intrinsic
dimensionality of the manifoldM, notd.

Theorem 3.2 (Consistency)Suppose the data lie on a compact manifoldM ⊂ Rd, and the norm
‖ · ‖ is the Euclidean norm inRd. If loss functionφ(p, y) is Lipschitz. Asn → ∞, we choose
α, β → ∞, α/n, β/n → 0 (α, β depends onn), andp = 0. Then it is possible to find coding
(γ, C) using unlabeled data such that|C|/n → 0 andQα,β,p(γ, C) → 0. If we pickλn →∞, and
λ|C| → 0. Then the local coordinate coding method (1) withg(v) ≡ 0 is consistent asn → ∞:
limn→∞ ESn

Ex,yφ(f(ŵ, x), y) = inff :M→R Ex,yφ (f(x), y).

4 Practical Learning of Coding

Given a coordinate coding(γ, C), we can use (1) to learn a nonlinear function inRd. We showed
that (γ, C) can be obtained by optimizingQα,β,p(γ, C). In practice, we may also consider the
following simplifications of the localization term:∑

v∈C

|γv(x)| ‖v − γ(x)‖1+p ≈
∑
v∈C

|γv(x)| ‖v − x‖1+p
.

Note that we may simply chosep = 0 orp = 1. The formulation is related to sparse coding [6] which
has no locality constraints withp = −1. In this representation, we may either enforce the constraint∑

v γv(x) = 1 or for simplicity, remove it because the formulation is already shift-invariant. Putting
the above together, we try to optimize the following objective function in practice:

Q(γ, C) = Ex inf
[γv ]

∥∥∥∥∥x−
∑
v∈C

γvv

∥∥∥∥∥
2

+ µ
∑
v∈C

|γv|‖v − x‖1+p

 .

We updateC andγ via alternating optimization. The step of updatingγ can be transformed into
a canonical LASSO problem, where efficient algorithms exist. The step of updatingC is a least-
squares problem in casep = 1.

5 Relationship to Other Methods

Our work is related to several existing approaches in the literature of machine learning and statistics.
The first class of them is nonlinear manifold learning, such as LLE [10], Isomap [11], and Laplacian
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Eigenmaps [1]. These methods findglobal coordinates of data manifold based on a pre-computed
affinity graph of data points. The use of affinity graphs requires expensive computation and lacks a
coherent way of generalization to new data. Our method learns a compact set of bases to formlocal
coordinates, which has a linear complexity with respect to data size and can naturally handle unseen
data. More importantly, local coordinate coding has a direct connection to nonlinear function ap-
proximation on manifold, and thus provides a theoretically sound unsupervised pre-training method
to facilitate further supervised learning tasks.

Another set of related models are local models in statistics, such as local kernel smoothing and local
regression, e.g.[4, 2], both traditionally using fixed-bandwidth kernels. Local kernel smoothing can
be regarded as a zero-order method; while local regression is higher-order, including local linear
regression as the 1st-order case. Traditional local methods are not widely used in machine learn-
ing practice, because data with non-uniform distribution on the manifold require to use adaptive-
bandwidth kernels. The problem can be somehow alleviated by using K-nearest neighbors. How-
ever, adaptive kernel smoothing still suffers from the high-dimensionality and noise of data. On
the other hand, higher-order methods are computationally expensive and prone to overfitting, be-
cause they are highly flexible in locally fitting many segments of data in high-dimension space. Our
method can be seen as a generalized 1st-order local method with basis learning and adaptive local-
ity. Compared to local linear regression, the learning is achieved by fitting a single globally linear
function with respect to a set of learned local coordinates, which is much less prone to overfitting
and computationally much cheaper. This means that our method achieves better balance between
local and global aspects of learning. The importance of such balance has been recently discussed in
[12].

Finally, local coordinate coding draws connections to vector quantization (VQ) coding, e.g., [3],
and sparse coding, which have been widely applied in processing of sensory data, such as acoustic
and image signals. Learning linear functions of VQ codes can be regarded as a generalized zero-
order local method with basis learning. Our method has an intimate relationship with sparse coding.
In fact, we can regard local coordinate coding as locally constrained sparse coding. Inspired by
biological visual systems, people has been arguing sparse features of signals are useful for learning
[8, 9, 7]. However, to the best of our knowledge, there is no analysis in the literature that directly
answers the question why sparse codes can help learning nonlinear functions in high dimensional
space. Our work reveals an important finding — a good first-order approximation to nonlinear
function requires the codes to be local, which consequently requires the codes to be sparse. However,
sparsity does not always guarantee locality conditions. Our experiments demonstrate that sparse
coding is helpful for learning only when the codes are local.

6 Experiments

Due to the space limitation, we only include two examples: one synthetic and one real, to illustrate
various aspects of our theoretical results. We note that image classification based on LCC recently
achieved state-of-the-art performance in PASCAL Visual Object Classes Challenge 2009.1

6.1 Synthetic Data

Our first example is based on a synthetic data set, where a nonlinear function is defined on a Swiss-
roll manifold, as shown in Figure 1-(1). The primary goal is to demonstrate the performance of
nonlinear function learning using simple linear ridge regression based on representations obtained
from sparse coding and local coordinate coding, which are, respectively, formulated as the following,

min
γ,C

∑
x

1
2
‖x− γ(x)‖2 + µ

∑
v∈C

|γv(x)|+ λ
∑
v∈C

‖v‖2 (2)

min
γ,C

∑
x

1
2
‖x− γ(x)‖2 + µ

∑
v∈C

|γv(x)|‖v − x‖2 + λ
∑
v∈C

‖v‖2 (3)

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/workshop/index.html
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(1) A nonlinear function (2) RMSE=4.394 (3) RMSE=0.499 (4)RMSE=4.661

(5) RMSE=0.201 (6) RMSE=0.109 (7) RMSE=0.669 (8) RMSE=1.170

Figure 1: Experiments of nonlinear regression on Swiss-roll: (1) a nonlinear function on the Swiss-
roll manifold, where the color indicates function values; (2) result of sparse coding with fixed ran-
dom anchor points; (3) result of local coordinate coding with fixed random anchor points; 4) result
of sparse coding; (5) result of local coordinate coding; (6) result of local kernel smoothing; (7) result
of local coordinate coding on noisy data; (8) result of local kernel smoothing on noisy data.

We randomly sample50, 000 data points on the manifold for unsupervised basis learning, and500
labeled points for supervised regression. The number of bases is fixed to be 128. The learned non-
linear functions are tested on another set of10, 000 data points, with their performances evaluated
by root mean square error (RMSE).

In the first setting, we let both coding methods use the same set of fixed bases, which are 128
points randomly sampled from the manifold. The regression results are shown in Figure 1-(2) and
(3), respectively. Sparse coding based approach fails to capture the nonlinear function, while local
coordinate coding behaves much better. We take a closer look at the data representations obtained
from the two different encoding methods, by visualizing the distributions of distances from encoded
data to bases that have positive, negative, or zero coefficients in Figure 2. It shows that sparse
coding lets bases faraway from the encoded data have nonzero coefficients, while local coordinate
coding allows only nearby bases to get nonzero coefficients. In other words, sparse coding on
this data does not ensure a good locality and thus fails to facilitate the nonlinear function learning.
As another interesting phenomenon, local coordinate coding seems to encourage coefficients to be
nonnegative, which is intuitively understandable — if we use several bases close to a data point to
linearly approximate the point, each basis should have a positive contribution. However, whether
there is any merit by explicitly enforcing nonnegativity will remain an interesting future work.

In the next two experiments, given the random bases as a common initialization, we let the two
algorithms learn bases from the50, 000 unlabeled data points. The regression results based on the
learned bases are depicted in Figure 1-(4) and (5), which indicate that regression error is further
reduced for local coordinate coding, but remains to be high for sparse coding. We also make a
comparison with local kernel smoothing, which takes a weighted average of function values of
K-nearest training points to make prediction. As shown in Figure 1-(6), the method works very
well on this simple low-dimensional data, even outperforming the local coordinate coding approach.
However, if we increase the data dimensionality to be256 by adding253-dimensional independent
Gaussian noises with zero mean and unitary variance, local coordinate coding becomes superior to
local kernel smoothing, as shown in Figure 1-(7) and (8). This is consistent with our theory, which
suggests that local coordinate coding can work well in high dimension; on the other hand, local
kernel smoothing is known to suffer from high dimensionality and noise.

6.2 Handwritten Digit Recognition

Our second example is based on the MNIST handwritten digit recognition benchmark, where each
data point is a28 × 28 gray image, and pre-normalized into a unitary784-dimensional vector. In
our setting, the setC of anchor points is obtained from sparse coding, with the regularization on
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(a-1) (a-2)

(b-1) (b-2)

Figure 2: Coding locality on Swiss roll: (a) sparse coding vs. (b) local coordinate coding.

v replaced by inequality constraints‖v‖ ≤ 1. Our focus here is not on anchor point learning, but
rather on checking whether a good nonlinear classifier can be obtained if we enforce sparsity and
locality in data representation, and then apply simple one-against-all linear SVMs.

Since the optimization cost of sparse coding is invariant under flipping the sign ofv, we take a
postprocessing step to change the sign ofv if we find the correspondingγv(x) for most ofx is
negative. This rectification will ensure the anchor points to be on the data manifold. With the
obtainedC, for each data pointx we solve the local coordinate coding problem (3), by optimizingγ
only, to obtain the representation[γv(x)]v∈C . In the experiments we try different sizes of bases. The
classification error rates are provided in Table 1. In addition we also compare with linear classifier
on raw images, local kernel smoothing based onK-nearest neighbors, and linear classifiers using
representations obtained from various unsupervised learning methods, including autoencoder based
on deep belief networks [5], Laplacian eigenmaps [1], locally linear embedding (LLE) [10], and VQ
coding based on K-means. We note that, like most of other manifold learning approaches, Laplacian
eigenmaps or LLE is a transductive method which has to incorporate both training and testing data in
training. The comparison results are summarized in Table 2. Both sparse coding and local coordinate
coding perform quite good for this nonlinear classification task, significantly outperforming linear
classifiers on raw images. In addition, local coordinate coding is consistently better than sparse
coding across various basis sizes. We further check the locality of both representations by plotting
Figure-3, where the basis number is512, and find that sparse coding on this data set happens to be
quite local — unlike the case of Swiss-roll data — here only a small portion of nonzero coefficients
(again mostly negative) are assigned onto the bases whose distances to the encoded data exceed
the average of basis-to-datum distances. This locality explains why sparse coding works well on
MNIST data. On the other hand, local coordinate coding is able to remove the unusual coefficients
and further improve the locality. Among those compared methods in Table 2, we note that the
error rate1.2% of deep belief network reported in [5] was obtained via unsupervised pre-training
followed by supervised backpropagation. The error rate based on unsupervised training of deep
belief networks is about1.90%.2 Therefore our result is competitive to the-state-of-the-art results
that are based on unsupervised feature learning plus linear classification without using additional
image geometric information.

2This is obtained via a personal communication with Ruslan Salakhutdinov at University of Toronto.
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(a-1) (a-2)

(b-1) (b-2)

Figure 3: Coding locality on MNIST: (a) sparse coding vs. (b) local coordinate coding.

Table 1: Error rates (%) of MNIST classification with different|C|.

|C| 512 1024 2048 4096
Linear SVM with sparse coding 2.96 2.64 2.16 2.02
Linear SVM with local coordinate coding 2.64 2.44 2.08 1.90

Table 2: Error rates (%) of MNIST classification with different methods.

Methods Error Rate
Linear SVM with raw images 12.0
Linear SVM with VQ coding 3.98
Local kernel smoothing 3.48
Linear SVM with Laplacian eigenmap 2.73
Linear SVM with LLE 2.38
Linear classifier with deep belief network 1.90
Linear SVM with sparse coding 2.02
Linear SVM with local coordinate coding 1.90

7 Conclusion

This paper introduces a new method for high dimensional nonlinear learning with data distributed
on manifolds. The method can be seen as generalized local linear function approximation, but can
be achieved by learning a global linear function with respect to coordinates from unsupervised local
coordinate coding. Compared to popular manifold learning methods, our approach can naturally
handle unseen data and has a linear complexity with respect to data size. The work also generalizes
popular VQ coding and sparse coding schemes, and reveals that locality of coding is essential for
supervised function learning. The generalization performance depends on intrinsic dimensionality
of the data manifold. The experiments on synthetic and handwritten digit data further confirm the
findings of our analysis.
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