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Abstract

Stochastic relational models (SRMs) [15] provide a rich family of choices for
learning and predicting dyadic data between two sets of entities. The models gen-
eralize matrix factorization to a supervised learning problem that utilizes attributes
of entities in a hierarchical Bayesian framework. Previously variational Bayes in-
ference was applied for SRMs, which is, however, not scalable when the size of
either entity set grows to tens of thousands. In this paper, we introduce a Markov
chain Monte Carlo (MCMC) algorithm for equivalent models of SRMs in order to
scale the computation to very large dyadic data sets. Both superior scalability and
predictive accuracy are demonstrated on a collaborative filtering problem, which
involves tens of thousands users and half million items.

1 Stochastic Relational Models

Stochastic relational models (SRMs) [15] are generalizations of Gaussian process (GP) models [11]
to the relational domain, where each observation is a dyadic datum, indexed by a pair of entities.
They model dyadic data by a multiplicative interaction of two Gaussian process priors.

Let U be the feature representation (or index) space of a set of entities. A pair-wise similarity in
U is given by a kernel (covariance) function Σ : U × U → R. A Gaussian process (GP) defines
a random function f : U → R, whose distribution is characterized by a mean function and the
covariance function Σ, denoted by f ∼ N∞(0,Σ)1, where, for simplicity, we assume the mean to
be the constant zero. GP complies with the intuition regarding the smoothness — if two entities ui
and uj are similar according to Σ, then f(ui) and f(uj) are similar with a high probability.

A domain of dyadic data must involve another set of entities, let it be represented (or indexed) by
V . In a similar way, this entity set is associated with another kernel function Ω. For example, in a
typical collaborative filtering domain, U represents users while V represents items, then, Σ measures
the similarity between users and Ω measures the similarity between items.

Being the relation between a pair of entities from different sets, a dyadic variable y is indexed by
the product space U × V . Then an SRM aims to model y(u, v) by the following generative process,

Model 1. The generative model of an SRM:

1. Draw kernel functions Σ ∼ IW∞(δ,Σ◦), and Ω ∼ IW∞(δ,Ω◦);

2. For k = 1, . . . , d: draw random functions fk ∼ N∞(0,Σ), and gk ∼ N∞(0,Ω);

1We denote an n dimensional Gaussian distribution with a covariance matrix Σ by Nn(0, Σ). Then
N∞(0, Σ) explicitly indicates that a GP follows an “infinite dimensional” Gaussian distribution.
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3. For each pair (u, v): draw y(u, v) ∼ p(y(u, v)|z(u, v), γ), where

z(u, v) =
1√
d

d∑
k=1

fk(u)gk(v) + b(u, v).

In this model, IW∞(δ,Σ◦) and IW∞(δ,Ω◦) are hyper priors, whose details will be introduced
later. p(y|z, γ) is the problem-specific noise model. For example, it can follow a Gaussian noise
distribution y ∼ N1(z, γ) if y is numerical, or, a Bernoulli distribution if y is binary. Function
b(u, v) is the bias function over the U × V . For simplicity, we assume b(u, v) = 0.

In the limit d → ∞, the model converges to a special case where fk and gk can be analytically
marginalized out and z becomes a Gaussian process z ∼ N∞(0,Σ ⊗ Ω) [15], with the covariance
between pairs being a tensor kernel

K ((ui, vs), (uj , vt)) = Σ(ui, uj)Ω(vs, vt).

In anther special case, if Σ and Ω are both fixed to be Dirac delta functions, and U , V are finite sets,
it is easy to see that the model reduces to probabilistic matrix factorization.

The hyper prior IW∞(δ,Σ◦) is called inverted Wishart Process that generalizes the finite n-
dimensional inverted Wishart distribution [2]

IWn(Σ|δ,Σ◦) ∝ |Σ|− 1
2 (δ+2n) etr

(− 1
2
Σ−1Σ◦

)
,

where δ is the degree-of-freedom parameter, and Σ◦ is a positive definite kernel matrix. We note
that the above definition is different from the popular formulation [3] or [4] in the machine learning
community. The advantage of this new notation is demonstrated by the following theorem [2].
Theorem 1. Let A ∼ IWm(δ,K), A ∈ R+, K ∈ R+, and A and K be partitioned as

A =
[
A11,A12

A21,A22

]
, K =

[
K11,K12

K21,K22

]
where A11 and K11 are two n× n sub matrices, n < m, then A11 ∼ IWn(δ,K11).

The new formulation of inverted Wishart is consistent under marginalization. Therefore, similar to
the way of deriving GPs from Gaussian distributions, we define a distribution of infinite-dimensional
kernel functions, denoted by Σ ∼ IW∞(δ,Σ◦), such that any sub kernel matrix of size m × m
follows Σ ∼ IWm(δ,Σ◦), where both Σ and Σ◦ are positive definite kernel functions. In case
when U and V are sets of entity indices, SRMs let Σ◦ and Ω◦ both be Dirac delta functions, i.e., any
of their sub kernel matrices is an identity matrix.

Similar to GP regression/classification, the major application of SRMs is supervised prediction based
on observed relational values and input features of entities. Formally, let YI = {y(u, v)|(u, v) ∈ I}
be the set of noisy observations, where I ⊂ U × V , the model aims to predict the noise-free values
ZO = {z(u, v)|(u, v) ∈ O} on O ⊂ U × V . As our computation is always on a finite set containing
both I and O, from now on, we only consider the finite subset U0 × V0, a finite support subset of
U ×V that contains I∪O. Accordingly we let Σ be the covariance matrix of Σ on U0, and Ω be the
covariance matrix of Ω on V0.

Previously a variational Bayesian method was applied to SRMs [15], which computes the maximum
a posterior estimates of Σ and Ω, given YI, and then predicts ZO based on the estimated Σ and Ω.
There are two limitations of this empirical Bayesian approach: (1) The variational method is not a
fully Bayesian treatment. Ideally we wish to integrate Σ and Ω; (2) The more critical issue is, the
algorithm has the complexity O(m3 + n3), with m = |U0| and n = |V0|, is not scalable to a large
relational domain where m or n exceeds several thousands. In this paper we will introduce a fully
Bayesian inference algorithm using Markov chain Monte Carlo sampling. By deriving equivalent
sampling processes, we show the algorithms can be applied to a dataset, which is 103 times larger
than the previous work [15], and produce an excellent accuracy.

In the rest of this paper, we present our algorithms for Bayesian inference of SRMs in Section 2.
Some related work is discussed in Section 3, followed by experiment results of SRMs in Section 4.
Section 5 concludes.
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2 Bayesian Models and MCMC Inference

In this paper, we tackle the scalability issue with a fully Bayesian paradigm. We estimate the expec-
tation of ZO directly from YI using Markov-chain Monte Carlo (MCMC) algorithm (specifically,
Gibbs sampling), instead of evaluating that from estimated Σ or Ω. Our contribution is in how to
make the MCMC inference more efficient for large scale data.

We first introduce some necessary notation here. Bold capital letters, e.g. X, indicate matrices. I(m)

is an identity matrix of size m×m. Nd,Nm,d, IWm, χ−2 are the multivariate normal distribution,
the matrix-variate normal distribution, the inverse-Wishart distribution, and the inverse chi-square
distribution, respectively.

2.1 Models with Non-informative Priors

Let r = |I|, m = |U0| and n = |V0|. It is assumed that d � min(m,n), and the observed set, I, is
sparse, i.e. r � mn. First, we consider the case of Σ◦ = αI(m) and Ω◦ = βI(n). Let {fk} on U0

denoted by matrix variate F of size m × d, {gk} on V0 denoted by matrix variate G of size n × d.
Then the generative model is written as Model 2 and depicted in Figure 1.

Σ I(d) Ω I(d)

F G

Z

Ys2

Figure 1: Model 2

Model 2. The generative model of a matrix-variate SRM:

1. Draw Σ ∼ IWm(δ, αI(m)) and Ω ∼ IWn(δ, βI(n));

2. Draw F|Σ ∼ Nm,d(0,Σ⊗ I(d)) and G|Ω ∼ Nn,d(0,Ω⊗ I(d));

3. Draw s2 ∼ χ−2(ν, σ2) ;

4. Draw Y|F,G, s2 ∼ Nm,n(Z, s2I(m) ⊗ I(n)), where Z = FG>.

where Nm,d is the matrix-variate normal distribution of size m × d; α,
β, δ, ν and σ2 are scalar parameters of the model. A slight difference
between this finite model and Model 1 is that the coefficient 1/

√
d is ignored for simplicity because

this coefficient can be absorbed by α or β.

As we can explicitly compute Pr(Σ|F), Pr(Ω|G), Pr(F|YI,G,Σ, s2), Pr(G|YI,F,Ω, s2),
Pr(s2|YI,F,G), we can apply Gibbs sampling algorithm to compute ZO. However, the com-
putational time complexity is at least O(m3 + n3), which is not practical for large scale data.

2.2 Gibbs Sampling Method

To overcome the inefficiency in sampling large covariance matrices, we rewrite the sampling
process using the property of Theorem 2 to take the advantage of d� min(m,n).

αI(m)

Σ I(d)

F →

αI(d)

KI(m)

F

Figure 2: Theorem 2

Theorem 2. If

1. Σ ∼ IWm(δ, αI(m)) and F|Σ ∼ Nm,d(0,Σ⊗ I(d)),

2. K ∼ IWd(δ, αI(d)) and H|K ∼ Nm,d(0, I(m) ⊗K),

then, matrix variates, F and H, have the same distribution.

Proof sketch. Matrix variate F follows a matrix variate t distribution,
t(δ, 0, αI(m), I(d)), which is written as

p(F) ∝ |I(m) + (αI(m))−1F(I(d))−1F>|− 1
2 (δ+m+d−1) = |I(m) + α−1FF>|− 1

2 (δ+m+d−1)

Matrix variate H follows a matrix variate t distribution, t(δ, 0, I(m), αI(d)), which can be written as

p(H) ∝ |I(m) + (I(m))−1H(αI(d))−1H>|− 1
2 (δ+m+d−1) = |I(m) + α−1HH>|− 1

2 (δ+m+d−1)

Thus, matrix variates, F and H, have the same distribution.
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This theorem allows us to sample a smaller covariance matrix K of size d × d on the column side
instead of sampling a large covariance matrix Σ of size m ×m on the row side. The translation is
depicted in Figure 2. This theorem applies to G as well, thus we rewrite the model as Model 3 (or
Figure 3). A similar idea was used in our previous work [16].

KI(m) RI(n)

F G

Z

Ys2

Figure 3: Model 3

Model 3. The alternative generative model of a matrix-variate SRM:

1. Draw K ∼ IWd(δ, αI(d)) and R ∼ IWd(δ, βI(d));

2. Draw F|K ∼ Nm,d(0, I(m) ⊗K), and G|R ∼ Nn,d(0, I(n) ⊗R),

3. Draw s2 ∼ χ−2(ν, σ2) ;

4. Draw Y|F,G, s2 ∼ Nm,n(Z, s2I(m) ⊗ I(n)), where Z = FG>.

Let column vector f i be the i-th row of matrix F, and column vector gj
be the j-th row of matrix G. In Model 3, {f i} are independent given K,
G and s2. Similar independence applies to {gj} as well. The conditional posterior distribution of
K, R, {f i}, {gj} and s2 can be easily computed, thus the Gibbs sampling for SRM is named BSRM
(for Bayesian SRM).

We use Gibbs sampling to compute the mean of ZO, which is derived from the samples of FG>.
Because of the sparsity of I, each iteration in this sampling algorithm can be computed in O(d2r +
d3(m + n)) time complexity2, which is a dramatic reduction from the previous time complexity
O(m3 + n3) .

2.3 Models with Informative Priors

An important characteristic of SRMs is that it allows the inclusion of certain prior knowledge of
entities into the model. Specifically, the prior information is encoded as the prior covariance param-
eters, i.e. Σ◦ and Ω◦. In the general case, it is difficult to run sampling process due to the size of Σ◦

and Ω◦. We assume that Σ◦ and Ω◦ have a special form, i.e. Σ◦ = F◦(F◦)>+αI(m), where F◦ is
an m× p matrix, and Ω◦ = G◦(G◦)>+ βI(n), where G◦ is an n× q matrix, and the magnitude of
p and q is about the same as or less than that of d. This prior knowledge can be obtained from some
additional features of entities.

Although such an informative Σ◦ prevents us from directly sampling each row of F independently,
as we do in Model 3, we can expand matrix F of size m × d to (F,F◦) of size m × (d + p), and
derive an equivalent model, where rows of F are conditionally independent given F◦. Figure 4
illustrates this transformation.

Σ0

Σ I(d)

F →

αI(d+p)

KI(m)

(F,F0)

Figure 4: Theorem 3

Theorem 3. Let δ > p, Σ◦ = F◦(F◦)>+αI(m), where F◦ is an m× p
matrix. If

1. Σ ∼ IWm(δ,Σ◦) and F|Σ ∼ Nm,d(0,Σ⊗ I(d)),

2. K =
(

K11 K12

K21 K22

)
∼ IWd+p(δ − p, αI(d+p)) and

H|K ∼ Nm,d(F◦K−1
22 K21, I(m) ⊗K11·2),

where K11·2 = K11 −K12K−1
22 K21, then F and H have the same distribution.

Proof sketch. Consider the distribution

(H1,H2)|K ∼ Nm,d+p(0, I(m) ⊗K). (1)

Because H1|H2 ∼ Nm,d(H2K−1
22 K21, I(m) ⊗ K11·2), p(H) = p(H1|H2 = F◦). On the other

hand, we have a matrix-variate t distribution, (H1,H2) ∼ tm,d+p(δ − p,0, αI(m), I(d+p)). By
Theorem 4.3.9 in [4], we have H1|H2 ∼ tm,d(δ,0, αI(m) + H2H>2 , I(d)) = tm,d(δ,0,Σ◦, I(d)),
which implies p(F) = p(H1|H2 = F◦) = p(H).

2|Y − FG>|2I can be efficiently computed in O(dr) time.
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The following corollary allows us to compute the posterior distribution of K efficiently.

Corollary 4. K|H ∼ IWd+p(δ +m,αI(d+p) + (H,F◦)>(H,F◦)).

Proof sketch. Because normal distribution and inverse Wishart distribution are conjugate, we can
derive the posterior distribution K from Eq. (1).

Thus, we can explicitly sample from the conditional posterior distributions, as listed in Algorithm 1
(BSRM/F for BSRM with features) in Appendix. We note that when p = q = 0, Algorithm 1
(BSRM/F) reduces to the exact algorithm for BSRM. Each iteration in this sampling algorithm can
be computed in O(d2r + d3(m+ n) + dpm+ dqn) time complexity.

2.4 Unblocking for Sampling Implementation

Blocking Gibbs sampling technique is commonly used to improve the sampling efficiency by re-
ducing the sample variance according to the Rao-Blackwell theorem (c.f. [9]). However, blocking
Gibbs sampling is not necessary to be computationally efficient. To improve the computational effi-
ciency of Algorithm 1, we use unblocking sampling to reduce the major computational cost is Step 2
and Step 4. We consider sampling each element of F conditionally. The sampling process is written
as Step 4 and Step 9 of Algorithm 2, which is called BSRM/F with conditional Gibss sampling. We
can reduce the computational cost of each iteration to O(dr + d2(m+ n) + dpm+ dqn), which is
comparable to other low-rank matrix factorization approaches. Though such a conditional sampling
process increases the sample variance comparing to Algorithm 1, we can afford more samples within
a given amount of time due to its faster speed. Our experiments show that the overall computational
cost of Algorithm 2 is usually less than that of Algorithm 1 when achieving the same accuracy.
Additionally, since {f i} are independent, we can parallelize the for loops in Step 4 and Step 9 of
Algorithm 2.

3 Related Work

SRMs fall into a class of statistical latent-variable relational models that explain relations by latent
factors of entities. Recently a number of such models were proposed that can be roughly put into two
groups, depending on whether the latent factors are continuous or discrete: (1) Discrete latent-state
relational models: a large body of research infers latent classes of entities and explains the entity
relationship by the probability conditioned on the joint state of participating entities, e.g., [6, 14, 7,
1]. In another work [10], binary latent factors are modeled; (2) Continuous latent-variable relational
models: many such models assume relational data underlain by multiplicative effects between latent
variables of entities, e.g. [5]. A simple example is matrix factorization, which recently has become
very popular in collaborative filtering applications, e.g., [12, 8, 13].

The latest Bayesian probabilistic matrix factorization [13] reported the state-of-the-art accuracy of
matrix factorization on Netflix data. Interestingly, the model turns out to be similar to our Model 3
under the non-informative prior. This paper reveals the equivalence between different models and
offers a more general Bayesian framework that allows informative priors from entity features to
play a role. The framework also generalizes Gaussian processes [11] to a relational domain, where
a nonparametric prior for stochastic relational processes is described.

4 Experiments

Synthetic data: We compare BSRM under noninformative priors against two other algorithms: the
fast max-margin matrix factorization (fMMMF) in [12] with a square loss, and SRM using varia-
tional Bayesian approach (SRM-VB) in [15]. We generate a 30 × 20 random matrix (Figure 5(a)),
then add Gaussian noise with σ2 = 0.1 (Figure 5(b)). The root mean squared noise is 0.32. We
select 70% elements as the observed data and use the rest of the elements for testing. The recon-
struction matrix and root mean squared errors (RMSEs) of predictions on the test elements are shown
in Figure 5(c)-5(e). BSRM outperforms the variational approach of SRMs and fMMMF. Note that
because of the log-determinant penalty of the inverse Wishart prior, SRM-VB enforces the rank to
be smaller, thus the result of SRM-VB looks smoother than that of BSRM.
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(b) With Noise(0.32)
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(c) fMMMF (0.27)
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(d) SRM-VB(0.22)
2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

(e) BSRM(0.19)

Figure 5: Experiments on synthetic data. RMSEs are shown in parentheses.

User Mean Movie Mean fMMMF [12] VB [8]
RMSE 1.425 1.387 1.186 1.165
MAE 1.141 1.103 0.943 0.915

Table 1: RMSE (root mean squared error) and MAE (mean absolute error) of the experiments on
EachMovie data. All standard errors are 0.001 or less.

EachMovie data: We test the accuracy and the efficiency of our algorithms on EachMovie. The
dataset contains 74, 424 users’ 2, 811, 718 ratings on 1, 648 movies, i.e. about 2.29% are rated by
zero-to-five stars. We put all the ratings into a matrix, and randomly select 80% as observed data
to predict the remaining ratings. The random selection was carried out 10 times independently. We
compare our approach against several competing methods: 1) User Mean, predicting ratings by the
sample mean of the same user’s ratings; 2) Move Mean, predicting rating by the sample mean of
ratings on the same movie; 3) fMMMF [12]; 4) VB introduced in [8], which is a probabilistic low-
rank matrix factorization using variational approximation. Because of the data size, we cannot run
the SRM-VB of [15]. We test the algorithms BSRM and BSRM/F, both following Algorithm 2,
which run without and with features, respectively. The features used in BSRM/F are generated from
the PCA result of the binary indicator matrix that indicates whether the user rates the movie. The
10 top factors of both the user side and the movie side are used as features, i.e. p = 10, q = 10. We
run the experiments with different d = 16, 32, 100, 200, 300. The hyper parameters are set to some
trivial values, δ = p + 1 = 11, α = β = 1, σ2 = 1, and ν = 1. The results are shown in Table 1
and 2. We find that the accuracy improves as the number of d is increased. Once d is greater than
100, the further improvement is not very significant within a reasonable amount of running time.

rank (d) 16 32 100 200 300
BSRM RMSE 1.0983 1.0924 1.0905 1.0903 1.0902

MAE 0.8411 0.8321 0.8335 0.8340 0.8393
BSRM/F RMSE 1.0952 1.0872 1.0848 1.0846 1.0852

MAE 0.8311 0.8280 0.8289 0.8293 0.8292

Table 2: RMSE (root mean squared error) and MAE (mean absolute error) of experiments on Each-
Movie data. All standard errors are 0.001 or less.

To compare the overall computational efficiency of the two Gibbs sampling procedures, Algorithm 1

 1.08

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 0  1000  2000  3000  4000  5000  6000  7000  8000

R
M

S
E

Running time (sec)

burn-in ends

burn-in ends

Algorithm 1
Algorithm 2

Figure 6: Time-Accuracy of Algorithm 1 and 2

and Algorithm 2, we run both algorithms
and record the running time and accuracy
in RMSE. The dimensionality d is set to
be 100. We compute the average ZO and
evaluate it after a certain number of itera-
tions. The evaluation results are shown in
Figure 6. We run both algorithms for 100
iterations as the burn-in period, so that we
can have an independent start sample. Af-
ter the burn-in period, we restart to compute
the averaged ZO and evaluate them, there-
fore there are abrupt points at 100 iterations
in both cases. The results show that the
overall accuracy of Algorithm 2 is better at
any given time.
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Netflix data: We also test the algorithms on the large collection of user ratings from netflix.com. The
dataset consists of 100, 480, 507 ratings from 480, 189 users on 17, 770 movies. In addition, Netflix
also provides a set of validation data with 1, 408, 395 ratings. In order to evaluate the prediction
accuracy, there is a test set containing 2, 817, 131 ratings whose values are withheld and unknown
for all the participants.

The features used in BSRM/F are generated from the PCA result of a binary matrix that indicates
whether or not the user rated the movie. The top 30 user-side factors are used as features, none of
movie-side factors are used, i.e. p = 30, q = 0. The hyper parameters are set to some trivial values,
δ = p + 1 = 31, α = β = 1, σ2 = 1, and ν = 1. The results on the validation data are shown in
Table 3. The submitted result of BSRM/F(400) achieves RMSE 0.8881 on the test set. The running
time is around 21 minutes per iteration for 400 latent dimensions on an Intel Xeon 2GHz PC.

BSRM BSRM/F
VB[8] BPMF [13] 100 200 400 100 200 400

RMSE 0.9141 0.8920 0.8930 0.8910 0.8895 0.8926 0.8880 0.8874

Table 3: RMSE (root mean squared error) of experiments on Netflix data.

5 Conclusions

In this paper, we study the fully Bayesian inference for stochastic relational models (SRMs), for
learning the real-valued relation between entities of two sets. We overcome the scalability issue
by transforming SRMs into equivalent models, which can be efficiently sampled. The experiments
show that the fully Bayesian inference outperforms the previously used variational Bayesian infer-
ence on SRMs. In addition, some techniques for efficient computation in this paper can be applied to
other large-scale Bayesian inferences, especially for models involving inverse-Wishart distributions.

Acknowledgment: We thank the reviewers and Sarah Tyler for constructive comments.
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Appendix

Before presenting the algorithms, we introduce the necessary notation. Let Ii = {j|(i, j) ∈ I} and
Ij = {i|(i, j) ∈ I}. A matrix with subscripts indicates its submatrix, which consists its entries at the
given indices in the subscripts, for example, XIj ,j is a subvector of the j-th column of X whose row
indices are in set Ij , X·,j is the j-th column of X (· indicates the full set). Xi,j denotes the (i, j)-th
entry of X. |X|2I is the squared sum of elements in set I, i.e.

∑
(i,j)∈I X

2
i,j . We fill the unobserved

elements in Y with 0 for simplicity in notation

Algorithm 1 BSRM/F: Gibbs sampling for SRM with features
1: Draw K ∼ IWd+p(δ +m,αI(d+p) + (F,F◦)>(F,F◦));
2: For each i ∈ U0, draw f i ∼ Nd(K(i)(s−2G>Y>i,· + K−1

11·2K12K−1
22 f◦i ),K(i)),

where K(i) =
(
s−2(GIi,·)>GIi,· + K−1

11·2
)−1

;
3: Draw R ∼ IWd+q(δ + n, βI(d+q) + (G,G◦)>(G,G◦));
4: For each j ∈ V0, draw gj ∼ Nd(R(j)(s−2F>Y·,j + R−1

11·2R12R−1
22 g◦j ),R(j)),

where R(j) =
(
s−2(FIj ,·)

>FIj ,· + R−1
11·2
)−1

;
5: Draw s2 ∼ χ−2(ν + r, σ2 + |Y − FG>|2I ).

Algorithm 2 BSRM/F: Conditional Gibbs sampling for SRM with features
1: ∆i,j ← Yi,j −

∑
k Fi,kGj,k, for (i, j) ∈ I;

2: Draw Φ ∼ Wd+p(δ +m+ d+ p− 1, (αI(d+p) + (F,F◦)>(F,F◦))−1);
3: for each (i, k) ∈ U0 × {1, · · · , d} do
4: Draw f ∼ N1(φ−1(s−2∆i,IiGIi,k−Fi,·Φ·,k), φ−1), where φ = s−2(GIi,k)>GIi,k + Φk,k;
5: Update Fi,k ← Fi,k + f , and ∆i,j ← ∆i,j − fGj,k, for j ∈ Ii;
6: end for
7: Draw Ψ ∼ Wd+q(δ + n+ d+ q − 1, (βI(d+q) + (G,G◦)>(G,G◦))−1);
8: for each (j, k) ∈ V0 × {1, · · · , d} do
9: Draw g ∼ N1(ψ−1(s−2∆>Ij ,jFIj ,k−Gj,·Ψ·,k), ψ−1),where ψ = s−2(FIj ,k)>FIj ,k+Ψk,k;

10: Update Gj,k ← Gj,k + g and ∆i,j ← ∆i,j − gFi,k, for i ∈ Ij ;
11: end for
12: Draw s2 ∼ χ−2(ν + r, σ2 + |∆|2I ).
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