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Abstract

We propose a simple clustering framework on graphs that encode pair-
wise data similarities. Unlike usual similarity-based methods, the ap-
proach softly assigns data to clusters in a probabilistic way. More im-
portantly, ahierarchical clusteringis naturally derived in this framework
to gradually merge lower-level clusters into higher-level ones. A random
walk analysis indicates that the algorithm exposes clustering structures in
variousresolutions, i.e., a higher level statistically models a longer-term
diffusion on graphs and thus discovers a moreglobalclustering structure.
Finally we provide very encouraging experimental results.

1 Introduction

Clustering has been widely applied in data analysis to group similar objects. Many algo-
rithms are either similarity-based or model-based. In general, the former (e.g., normalized
cut [5]) requires no assumption on data densities but simply a similarity function, and
usually partitions data exclusively into clusters. In contrast, model-based methods apply
mixture models to fit data distributions and assign data to clusters (i.e. mixture components)
probabilistically. Thissoft clustering is often desired, as it encodes uncertainties on data-
to-cluster assignments. However, their density assumptions can sometimes be restrictive,
e.g. clusters have to be Gaussian-like in Gaussian mixture models (GMMs).

In contrast to flat clustering,hierarchical clusteringmakes intuitive senses by forming a
tree of clusters. Despite of its wide applications, the technique is usually achieved by
heuristics (e.g., single link) and lacks theoretical backup. Only a few principled algorithms
exist so far, where a Gaussian or a sphere-shape assumption is often made [3, 1, 2].

This paper suggests a novel graph-factorization clustering (GFC) framework that employs
data’s affinities and meanwhile partitions data probabilistically. A hierarchical clustering
algorithm (HGFC) is further derived by merging lower-level clusters into higher-level ones.
Analysis based on graph random walks suggests that our clustering method models data
affinities asempirical transitionsgenerated by a mixture of latent factors. This view sig-
nificantly differs from conventional model-based clustering since here the mixture model
is not directly for data objects but for their relations. Clusters with arbitrary shapes can be
modeled by our method since only pairwise similarities are considered. Interestingly, we
prove that the higher-level clusters are associated with longer-term diffusive transitions on
the graph, amounting to smoother and more global similarity functions on the data mani-



fold. Therefore, the cluster hierarchy exposes the observed affinity structure gradually in
different resolutions, which is somehow similar to thewaveletmethod that analyzes sig-
nals in different bandwidths. To the best of our knowledge, this property has never been
considered by other agglomerative hierarchical clustering algorithms (e.g., see [3]).

The paper is organized as follows. In the following section we describe a clustering al-
gorithm based on similarity graphs. In Sec. 3 we generalize the algorithm to hierarchical
clustering, followed by a discussion from the random walk point of view in Sec. 4. Finally
we present the experimental results in Sec. 5 and conclude the paper in Sec. 6.

2 Graph-factorization clustering (GFC)

Data similarity relations can be conveniently encoded by a graph, where vertices denote
data objects and adjacency weights represent data similarities. This section introduces
graph factorization clustering, which is a probabilistic partition of graph vertices. For-
mally, letG(V,E) be a weighted undirected graph with verticesV = {vi}n

i=1 and edges
E ⊆ {(vi, vj)}. Let W = {wij} be the adjacency matrix, wherewij = wji, wij > 0
if (vi, vj) ∈ E andwij = 0 otherwise. For instances,wij can be computed by the RBF
similarity function based on the features of objectsi andj, or by a binary indicator (0 or 1)
of thek-nearest neighbor affinity.

2.1 Bipartite graphs

Before presenting the main idea, it is necessary to introducebipartite graphs. Let
K(V,U,F) be the bipartite graph (e.g., Fig. 1–(b)), whereV = {vi}n

i=1 and U =
{up}m

p=1 are the two disjoint vertex sets andF contains all the edges connectingV and
U. Let B = {bip} denote then ×m adjacency matrix withbip ≥ 0 being the weight for
edge[vi, up]. The bipartite graphK induces a similarity betweenvi andvj [6]

wij =
m∑

p=1

bipbjp

λp
=

(
BΛ−1B>

)
ij

, Λ = diag(λ1, . . . , λm) (1)

whereλp =
∑n

i=1 bip denotes the degree of vertexup ∈ U. We can interpret Eq. (1)
from the perspective ofMarkov random walkson graphs. wij is essentially a quantity
proportional to the stationary probability of direct transitions betweenvi andvj , denoted
by p(vi, vj). Without loss of generality, we normalizeW to ensure

∑
ij wij = 1 and

wij = p(vi, vj). For a bipartite graphK(V,U,F), there is no direct links between vertices
in V, and all the paths fromvi to vj must go through vertices inU. This indicates

p(vi, vj) = p(vi)p(vj |vi) = di

∑
p

p(up|vi)p(vj |up) =
∑

p

p(vi, up)p(up, vj)
λp

,

wherep(vj |vi) is the conditional transition probability fromvi to vj , anddi = p(vi) the
degree ofvi. This directly leads to Eq. (1) withbip = p(vi, up).

2.2 Graph factorization by bipartite graph construction

For a bipartite graphK, p(up|vi) = bip/di tells the conditional probability of transitions
from vi to up. If the size ofU is smaller than that ofV, namelym < n, thenp(up|vi)
indicates how likely data pointi belongs to vertexp. This property suggests that one can
construct a bipartite graphK(V,U,F) to approximate a givenG(V,E), and then obtain
a soft clustering structure, whereU corresponds to clusters (see Fig. 1–(a) (b)).



(a) (b) (c)

Figure 1: (a) The original graph representing data affinities; (b) The bipartite graph repre-
senting data-to-cluster relations; (c) The induced cluster affinities.

Eq. (1) suggests that this approximation can be done by minimizing`(W,BΛ−1B>),
given a distancè(·, ·) between two adjacency matrices. To make the problem easy to
solve, we remove the coupling betweenB andΛ via H = BΛ−1 and then have

min
H,Λ

`
(
W,HΛH>

)
, s. t.

n∑
i=1

hip = 1,H ∈ Rn×m
+ , Λ ∈ Dm×m

+ , (2)

whereDm×m
+ denotes the set ofm × m diagonal matrices with positive diagonal entries.

This problem is a symmetric variant of non-negative matrix factorization [4]. In this paper
we focus on thedivergence distancebetween matrices. The following theorem suggests an
alternating optimization approach to find a local minimum:

Theorem 2.1. For divergence distancè(X,Y) =
∑

ij(xij log xij

yij
− xij + yij), the cost

function in Eq. (2) is non-increasing under the update rule( ·̃ denote updated quantities)

h̃ip ∝ hip

∑
j

wij

(HΛH>)ij

λphjp, normalize s.t.
∑

i

h̃ip = 1; (3)

λ̃p ∝ λp

∑
ij

wij

(HΛH>)ij

hiphjp, normalize s.t.
∑

p

λ̃p =
∑
ij

wij . (4)

The distance is invariant under the update if and only ifH andΛ are at a stationary point.

See Appendix for all the proofs in this paper. Similar to GMM,p(up|vi) = bip/
∑

q biq is
the soft probabilistic assignment of vertexvi to clusterup. The method can be seen as a
counterpart of mixture models on graphs. The time complexity isO(m2N) with N being
the number of nonzero entries inW. This can be very efficient ifW is sparse (e.g., for
k-nearest neighbor graph the complexityO(m2nk) scales linearly with sample sizen).

3 Hierarchical graph-factorization clustering (HGFC)

As a nice property of the proposed graph factorization, a natural affinity between two clus-
tersup anduq can be computed as

p(up, uq) =
n∑

i=1

bipbiq

di
=

(
B>D−1B

)
pq

, D = diag(d1, . . . , dn) (5)

This is similar to Eq. (1), but derived from another way of two-hop transitionsU → V →
U. Note that the similarity between clustersp andq takes into account a weighted average
of contributions fromall the data (see Fig. 1–(c)).



Let G0(V0,E0) be the initial graph describing the similarities of totallym0 = n
data points, with adjacency matrixW0. Based onG0 we can build a bipartite graph
K1(V0,V1,F1), with m1 < m0 vertices inV1. A hierarchical clustering method can
be motivated from the observation that the cluster similarity in Eq. (5) suggests a new adja-
cency matrixW1 for graphG1(V1,E1), whereV1 is formed by clusters, andE1 contains
edges connecting these clusters. Then we can group those clusters by constructing another
bipartite graphK2(V1,V2,F2) with m2 < m1 vertices inV2, such thatW1 is again fac-
torized as in Eq. (2), and a new graphG2(V2,E2) can be built. In principal we can repeat
this procedure until we get only one cluster. Algorithm 1 summarizes this algorithm.

Algorithm 1 Hierarchical Graph-Factorization Clustering (HGFC)
Require: givenn data objects and a similarity measure
1: build the similarity graphG0(V0,E0) with adjacency matrixW0, and letm0 = n
2: for l = 1, 2, . . . , do
3: chooseml < ml−1

4: factorizeGl−1 to obtainKl(Vl−1,Vl,Fl) with the adjacency matrixBl

5: build a graphGl(Vl,El) with the adjacency matrixWl = B>l D−1
l Bl, whereDl’s

diagonal entries are obtained by summation overBl’s columns
6: end for

The algorithm ends up with a hierarchical clustering structure. For levell, we can assign
data to the obtainedml clusters via a propagation from the bottom level of clusters. Based
on the chain rule of Markov random walks, the soft (i.e., probabilistic) assignment ofvi ∈
V0 to clusterv(l)

p ∈ Vl is given by

p
(
v(l)

p |vi

)
=

∑
v(l−1)∈Vl−1

· · ·
∑

v(1)∈V1

p
(
v(l)

p |v(l−1)
)
· · · p

(
v(1)|vi

)
=

(
D−1

1 B̄l

)
ip

, (6)

whereB̄l = B1D−1
2 B2D−1

3 B3 . . .D−1
l Bl. One can interpret this by deriving anequiv-

alent bipartite graphK̄l(V0,Vl, F̄l), and treatingB̄l as theequivalentadjacency matrix
attached to theequivalentedges̄Fl connecting dataV0 and clustersVl.

4 Analysis of the proposed algorithms

4.1 Flat clustering: statistical modeling of single-hop transitions

In this section we provide some insights to the suggested clustering algorithm, mainly
from the perspective of random walks on graphs. Suppose that from a stationary stage of
random walks onG(V,E), one observesπij single-hop transitions betweenvi andvj in a
unitary time frame. As an intuition of graph-based view to similarities, if two data points
are similar or related, the transitions between them are likely to happen. Thus we connect
the observed similarities to thefrequencyof transitions viawij ∝ πij . If the observed
transitions are i.i.d. sampled from a true distributionp(vi, vj) = (HΛH>)ij where a
bipartite graph is behind, then the log likelihood with respect to the observed transitions is

L(H,Λ) = log
∏
ij

p(vi, vj)πij ∝
∑
ij

wij log(HΛH>)ij . (7)

Then we have the following conclusion

Proposition 4.1. For a weighted undirected graphG(V,E) and the log likelihood defined
in Eq. (7), the following results hold:(i) Minimizing the divergence distancel(W,HΛH>)
is equivalent to maximizing the log likelihoodL(H,Λ); (ii) Updates Eq. (3) and Eq. (4)
correspond to a standard EM algorithm for maximizingL(H,Λ).



Figure 2: The similarities of vertices to a fixed vertex (marked in the left panel) on a 6-
nearest-neighbor graph, respectively induced by clustering levell = 2 (the middle panel)
andl = 6 (the right panel). A darker color means a higher similarity.

4.2 Hierarchical clustering: statistical modeling of multi-hop transitions

The adjacency matrixW0 of G0(V0,E0) only models one-hop transitions that follow
direct links from vertices to their neighbors. However, the random walk is a process of
diffusion on the graph. Within a relatively longer period, a walker starting from a vertex
has the chance to reach vertices faraway throughmulti-hoptransitions. Obviously, multi-
hop transitions induce a slowly decaying similarity function on the graph. Based on the
chain rule of Markov process, the equivalent adjacency matrix fort-hop transitions is

At = W0(D−1
0 W0)t−1 = At−1D−1

0 W0. (8)

Generally speaking, a slowly decaying similarity function on the similarity graph captures
a global affinity structure of data manifolds, while a rapidly decaying similarity function
only tells the local affinity structure. The following proposition states that in the sug-
gested HGFC, a higher-level clustering implicitly employs a more global similarity mea-
sure caused by multi-hop Markov random walks:
Proposition 4.2. For a given hierarchical clustering structure that starts from a bottom
graphG0(V0,E0) to a higher levelGk(Vk,Ek), the verticesVl at level l, 0 < l ≤ k,
induces an equivalent adjacency matrix ofV0, which isAt with t = 2l−1 as defined in
Eq. (8).

Therefore the presented hierarchical clustering algorithm HGFC applies different sizes of
time windows to examine random walks, and derives different scales of similarity measures
to expose the local and global clustering structures of data manifolds. Fig. 2 illustrates the
employed similarities of vertices to a fixed vertex in clustering levelsl = 2 and6, which
corresponds to time periodst = 2 and32. It can be seen that for a short periodt = 2,
the similarity is very local and helps to uncover low-level clusters, while in a longer period
t = 32 the similarity function is rather global.

5 Empirical study

We apply HGFC on USPS handwritten digits and Newsgroup text data. For USPS data we
use the images of digits 1, 2, 3 and 4, with respectively 1269, 929, 824 and 852 images per
class. Each image is represented as a 256-dimension vector. The text data contain totally
3970 documents covering 4 categories, autos, motorcycles, baseball, and hockey. Each
document is represented by an 8014-dimension TFIDF feature vector. Our method employs
a 10-nearest-neighbor graph, with the similarity measure RBF for USPS and cosine for
Newsgroup. We perform 4-level HGFC, and set the cluster number, respectively from
bottom to top, to be 100, 20, 10 and 4 for both data sets.

We compare HGFC with two popular agglomerative hierarchical clustering algorithms, sin-
gle link and complete link (e.g., [3]). Both methods merge two closest clusters at each step.



Figure 3: Visualization of HGFC for USPS data set. Left: mean images of the top 3 clus-
tering levels, along with a Hinton graph representing the soft (probabilistic) assignments of
randomly chosen 10 digits (shown on the left) to the top 3rd level clusters; Middle: a Hin-
ton graph showing the soft cluster assignments from top 3rd level to top 2nd level; Right:
a Hinton graph showing the soft assignments from top 2nd level to top 1st level.

Figure 4: Comparison of clustering methods on USPS (left) and Newsgroup (right), evalu-
ated by normalized mutual information (NMI). Higher values indicate better qualities.

Single link defines the cluster distance to be the smallest point-wise distance between two
clusters, while complete link uses the largest one. A third compared method is normalized
cut [5], which partitions data into two clusters. We apply the algorithm recursively to pro-
duce a top-down hierarchy of 2, 4, 8, 16, 32 and 64 clusters. We also compare with the
k-means algorithm,k = 4, 10, 20 and100.

Before showing the comparison, we visualize a part of clustering results for USPS data
in Fig. 3. On top of the left figure, we show the top three levels of the hierarchy with
respectively 4, 10 and 20 clusters, where each cluster is represented by its mean image via
an average over all the images weighted by their posterior probabilities of belonging to this
cluster. Then 10 randomly sampled digits with soft cluster assignments to the top 3rd level
clusters are illustrated with a Hinton graph. The middle and right figures in Fig. 3 show
the assignments between clusters across the hierarchy. The clear diagonal block structure
in all the Hinton graphs indicates a very meaningful cluster hierarchy.



Normalized cut HGFC K-means
“1” 635 630 1 3 1254 3 8 4 1265 1 0 3
“2” 2 4 744 179 1 886 33 9 17 720 95 97
“3” 2 1 817 4 1 4 816 3 10 9 796 9
“4” 10 6 1 835 4 8 2 838 58 20 0 774

Table 1: Confusion matrices of clustering results, 4 clusters, USPS data. In each confusion
matrix, rows correspond true classes and columns correspond the found clusters.

Normalized cut HGFC K-means
autos 858 98 30 2 772 182 13 21 977 7 4 0
motor. 79 893 16 5 42 934 5 12 985 3 5 0
baseball 44 33 875 40 15 33 843 101 39 835 114 4
hockey 11 8 893 85 7 21 11 958 16 4 900 77

Table 2: Confusion matrices of clustering results, 4 clusters, Newsgroup data. In each
confusion matrix, rows correspond true classes and columns correspond the found clusters.

We compare the clustering methods by evaluating the normalized mutual information
(NMI) in Fig. 4. It is defined to be the mutual information between clusters and true
classes, normalized by the maximum of marginal entropies. Moreover, in order to more
directly assess the clustering quality, we also illustrate the confusion matrices in Table 1
and Table 2, in the case of producing 4 clusters. We drop out the confusion matrices of
single link and complete link in the tables, for saving spaces and also due to their clearly
poor performance compared with others.

The results show that single link performs poorly, as it greedily merges nearby data and
tends to form a big cluster with some outliers. Complete link is more balanced but unsat-
isfactory either. For the Newsgroup data it even gets stuck at the 3601-th merge because
all the similarities between clusters are 0. Top-down hierarchical normalized cut obtains
reasonable results, but sometimes cannot split one big cluster (see the tables). The con-
fusion matrices indicates that k-means does well for digit images but relatively worse for
high-dimension textual data. In contrast, Fig. 4 shows that HGFC gives significantly higher
NMI values than competitors on both tasks. It also produces confusion matrices with clear
diagonal structures (see tables 1 and 2), which indicates a very good clustering quality.

6 Conclusion and Future Work

In this paper we have proposed a probabilistic graph partition method for clustering data ob-
jects based on their pairwise similarities. A novel hierarchical clustering algorithm HGFC
has been derived, where a higher level in HGFC corresponds to a statistical model of ran-
dom walk transitions in a longer period, giving rise to a more global clustering structure.
Experiments show very encouraging results.

In this paper we have empirically specified the number of clusters in each level. In the
near future we plan to investigate effective methods to automatically determine it. Another
direction is hierarchical clustering on directed graphs, as well as its applications in web
mining.



Appendix

Proof of Theorem 2.1.We first notice that
∑

p λp =
∑

ij wij under constraints
∑

i hip = 1. There-
fore we can normalizeW by

∑
ij wij and after convergence multiply allλp by this quantity to get

the solution. Under this assumption we are maximizingL(H,Λ) =
∑

ij wij log(HΛH>)ij with
an extra constraint

∑
p λp = 1. We first fixλp and show update Eq. (3) will not decreaseL(H) ≡

L(H,Λ). We prove this by constructing an auxiliary functionf(H,H∗) such thatf(H,H∗) ≤
L(H) andf(H,H) = L(H). Then we know the updateHt+1 = arg maxH f(H,Ht) will not
decreaseL(H) sinceL(Ht+1) ≥ f(Ht+1,Ht) ≥ f(Ht,Ht) = L(Ht). Definef(H,H∗) =∑

ij wij

∑
p

h∗ipλph∗jp∑
l h∗

il
λlh

∗
jl

(
log hipλphjp − log

h∗ipλph∗jp∑
l h∗

il
λlh

∗
jl

)
. f(H,H) = L(H) can be easily veri-

fied, andf(H,H∗) ≤ L(H) also follows if we use concavity of log function. Then it is straightfor-
ward to verify Eq. (3) by setting the derivative off with respect tohip to be zero. The normalization
is due to the constraints and can be formally derived from this procedure with a Lagrange formalism.
Similarly we can define an auxiliary function forΛ with H fixed, and verify Eq. (4).

Proof of Proposition 4.1.(i) follows directly from the proof of Theorem 2.1. To prove (ii) we take
up as the missing data and follow the standard way to derive the EM algorithm. In the E-step we esti-
mate thea posterioriprobability of takingup for pair (vi, vj) using Bayes’ rule:p̂(up|vi, vj) ∝
p(vi|up)p(vj |up)p(up). And then in the M-step we maximize the “complete” data likelihood
L̂(G) =

∑
ij wij

∑
p p̂(up|vi, vj) log p(vi|up)p(vj |up)p(up) with respect to model parameters

hip = p(vi|up) andλp = p(up), with constraints
∑

i hip = 1 and
∑

p λp = 1. By setting the cor-
responding derivatives to zero we obtainhip ∝

∑
j wij p̂(up|vi, vj) andλp ∝

∑
ij wij p̂(up|vi, vj).

It is easy to check that they are equivalent to updates Eq. (3) and Eq. (4) respectively.

Proof of Proposition 4.2.We give a brief proof. Suppose that at levell the data-cluster relationship
is described byK̄l(V0,Vl, F̄l) (see Eq. (6)) with adjacency matrix̄Bl, degreesD0 for V0, and
degreesΛl for Vl. In this case the induced adjacency matrix ofV0 is W̄l = B̄lΛ

−1
l B̄

>
l , and

the adjacency matrix ofVl is Wl = B̄
>
l D−1

0 B̄l. Let Kl(Vl,Vl+1,Fl+1) be the bipartite graph
connectingVl andVl+1, with the adjacencyBl+1 and degreesΛl+1 for Vl+1. Then the adjacency
matrix of V0 induced by levell + 1 is W̄l+1 = B̄lΛ

−1
l Bl+1Λ

−1
l+1B

>
l+1Λ

−1
l B̄

>
l = W̄lD

−1
0 W̄l,

where relationsBl+1Λ
−1
l+1B

>
l+1 = B̄

>
l D−1

0 B̄l andW̄l = BlΛ
−1
l B>

l are applied. Given the initial
condition from the bottom level̄W1 = W0, it is not difficult to obtainW̄l = At with t = 2l−1.
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