
Large-scale Image Classification:

Fast Feature Extraction and SVM Training

Yuanqing Lin, Fengjun Lv, Shenghuo Zhu, Ming Yang, Timothee Cour and Kai Yu

NEC Laboratories America, Cupertino, CA 95014

Liangliang Cao and Thomas Huang

Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801

Abstract

Most research efforts on image classification so far

have been focused on medium-scale datasets, which are

often defined as datasets that can fit into the memory of a

desktop (typically 4G∼48G). There are two main reasons

for the limited effort on large-scale image classification.

First, until the emergence of ImageNet dataset, there

was almost no publicly available large-scale benchmark

data for image classification. This is mostly because

class labels are expensive to obtain. Second, large-scale

classification is hard because it poses more challenges

than its medium-scale counterparts. A key challenge is

how to achieve efficiency in both feature extraction and

classifier training without compromising performance. This

paper is to show how we address this challenge using

ImageNet dataset as an example. For feature extraction, we

develop a Hadoop scheme that performs feature extraction

in parallel using hundreds of mappers. This allows us

to extract fairly sophisticated features (with dimensions

being hundreds of thousands) on 1.2 million images within

one day. For SVM training, we develop a parallel

averaging stochastic gradient descent (ASGD) algorithm for

training one-against-all 1000-class SVM classifiers. The

ASGD algorithm is capable of dealing with terabytes of

training data and converges very fast – typically 5 epochs

are sufficient. As a result, we achieve state-of-the-art

performance on the ImageNet 1000-class classification, i.e.,

52.9% in classification accuracy and 71.8% in top 5 hit

rate.

1. Introduction

It is needless to say how important of image clas-

sification/recognition is in the field of computer vision

– image recognition is essential for bridging the huge

semantic gap between an image, which is simply a scatter

of pixels to untrained computers, and the object it presents.

Therefore, there have been extensive research efforts on

developing effective visual object recognizers [10]. Along

the line, there are quite a few benchmark datasets for

image classification, such as MNIST [1], Caltech 101 [9],

Caltech 256 [11], PASCAL VOC [7], LabelMe[19], etc.

Researchers have developed a wide spectrum of different

local descriptors [17, 16, 5, 22], bag-of-words models [14,

24] and classification methods [4], and they compared

to the best available results on those publicly available

datasets – for PASCAL VOC, many teams from all over

the world participate in the PASCAL Challenge each year

to compete for the best performance. Such benchmarking

activities have played an important role in pushing object

classification research forward in the past years.

In recent years, there is a growing consensus that it

is necessary to build general purpose object recognizers

that are able to recognize many different classes of objects

– e.g. this can be very useful for image/video tagging

and retrieval. Caltech 101/256 are the pioneer benchmark

datasets on that front. Newly released ImageNet dataset [6]

goes a big step further, as shown in Fig. 1 – it further

increases the number of classes to 10001, and it has more

than 1000 images for each class on average. Indeed, it is

necessary to have so many images for each class to cover

visual variance, such as lighting, orientation as well as

fairly wild appearance difference within the same class –

like different cars may look very differently although all

belong to the same class.

However, compared to those previous medium-

scale datasets (such as PASCAL VOC datasets and

Caltech101&256, which can fit into desktop memory),

large-scale ImageNet dataset poses more challenges in

image classification. For example, those previous datesets

1The overall ImageNet dataset consists of 11,231,732 labeled images

of 15589 classes by October 2010. But here we only concern about the

subset of ImageNet dataset (about 1.2 million images) that was used in

2010 ImageNet Large Scale Visual Recognition Challenge

1689

0.0 200.0k 400.0k 600.0k 800.0k 1.0M 1.2M
0

200

400

600

800

1000

LabelMe

PASCAL MNIST

Caltech101

Caltech256

ImageNet

#
 o

f
c
la

s
s
e
s

of data samples

Figure 1. The comparison of ImageNet dataset with other bench-

mark datasets for image classification. ImageNet dataset is

significantly larger in terms of both the number of data samples

and the number of classes.

have at most 30,000 or so images, and it is still feasible to

exploit kernel methods for training nonlinear classifiers,

which often provide state-of-the-art performance. In

contrast, the kernel methods are prohibitively expensive

for ImageNet dataset that consists of 1.2 million images.

Therefore, a key new challenge for the ImageNet large-

scale image classification is how to efficiently extract

image features and train classifiers without compromising

performance. This paper is to show how we address

the challenge and achieve so far the state-of-the-art

classification performance on the ImageNet dataset.

The major contribution of this paper is to show how to

train an image classification system on large-scale datasets

in a system level. We develop a fast feature extraction

scheme using Hadoop [21]. More importantly, following

[23], we develop a parallel averaging stochastic gradient

descent (ASGD) algorithm with proper step size scheduling

to achieve fast SVM training.

2. Classification system overview

For ImageNet large-scale image classification, we em-

ploy a classification system shown in Fig. 2. This system

follows the approaches described in a number of previous

works [24, 28] that showed state-of-the-art performance

on medium-scale image classification datasets (such as

PASCAL VOC and Caltech101&256). Here, we attempt

to integrate the advantages from those previous systems.

The contribution of this paper is not to propose a new

classification paradigm but to develop efficient algorithms

to gain similar performance on large-scale ImagetNet

dataset as those achieved by the state-of-the-art methods on

medium-scale datasets.

Extending the methods for medium-scale datasets to

Figure 2. The overview of our large-scale image classification

system. This system represents an image using a bag-of-words

(BoW) model and performs classification using a linear SVM

classifier. Given an input image, the system first extracts dense

local descriptors, HOG [5] or LBP (local binary pattern [22]).

Then, each local descriptor is coded either using local coordinate

coding (LCC) [26] or Gaussian model supervector coding [28].

The codes of the descriptors are then passed to weighted pooling

or max-pooling with spatial pyramid matching (SPM) to form a

vector for representing the image. Finally, the feature vector is fed

to a linear SVM for classification.

large-scale imageNet dataset is not easy. For the reported

best performers on the medium-scale datasets [28, 24],

extracting image features on one image takes at least a

couple of seconds (and even minutes [24]). Even if it

takes 1 second per image for feature extraction, in total

it would take 1.2 × 106 seconds ≈ 14 days. Even more

challenging is SVM training. Let’s use PASCAL VOC 2010

for comparison. The PASCAL dataset consists of about

10,000 images in 20 classes. To our experience, training

SVM for this PASCAL dataset (e.g. using LIBLINEAR [8])

would take more than 1 hour if we use the features that

are employed in those state-of-the-art methods (without

dimensionality reduction, e.g., by kernel trick). This means

we would need at least 1 × 50 × 120 hours = 250 days

in computation – not counting the often most painful part,

memory constraints and file I/O bottlenecks. Indeed, we

need new thinking on existing algorithms: mostly, more

parallelization and efficiency for computation, and faster

convergence for iterative algorithms, particularly, SVM

training. In the following two sections, Section 3 and

Section 4, we will show how to implement the new thinking

into image feature extraction and SVM training, which are

the two major functional blocks in our classification system

(as shown in Fig. 2).

3. Feature extraction

As shown in Fig. 2, given an input image, our system first

extracts dense HOG (histogram of oriented gradients [5])

1690

and LBP (local binary pattern [22]) local descriptors. Both

features have been proven successful in various vision

tasks such as object classification, texture analysis and face

recognition, etc. HOG and LBP are complementary in the

sense that HOG focuses more on shape information while

LBP emphasizes texture information within each patch.

The advantage of such combination was also reported in

[22] for human detection task. For images with large

size, we downsize them to no more than 500 pixels at

either side. Such normalization not only considerably

reduces computational cost, but more importantly, makes

the representation more robust to scale difference. We used

three scales of patch size for computing HOG and LBP,

namely, 16×16, 24×24 and 32×32. The multiple patch

sizes provide richer coverage of different scales and make

the features more invariant to scale changes.

After extracting dense local image descriptors, denoted

by z ∈ R
d, we perform the ‘coding’ and ‘pooling’ steps, as

shown in Fig. 2, where the coding step encodes each local

descriptor z via a nonlinear feature mapping into a new

space, then the pooling step aggregates the coding results

fallen in a local region into a single vector. We apply two

state-of-the-art ‘coding + pooling’ pipelines in our system,

one is based on local coordinate coding (LCC) [26], and

the other is based on super-vector coding (SVC) [28]. For

simplicity, we assume the pooling is global. But spatial

pyramid pooling is simply implemented by applying the

same operation independently within each partitioned block

of images.

3.1. Local Coordinate Coding (LCC)

Let B = [b1, . . . , bp] ∈ R
d×p be the codebook, where

d is the dimensionality of descriptors z and p is the size of

the codebook. Like many coding methods, LCC seeks a

linear combination of bases in B to reconstruct z, namely

z ≈ Bα, and then use the coefficients α as the coding result

for z. Typically α is sparse and its dimensionality is higher

than that of z. We note that the mapping φ(z) from z to α is

usually nonlinear. The theory of LCC points out that, under

a mild manifold assumption, a good coding should satisfy

two properties:

• The approximation z ≈ Bα is sufficiently accurate;

• The coding α should be sufficiently local – only those

bases close to z are activated;

Based on the theory, we develop a very simple algorithm

here. We first use K-means algorithm to learn a codebook

B and then for encoding z do the following:

1. Ensure sufficient locality: find z’s κ nearest neighbors

in B, typically κ = 20, and denote the found bases as

Bz ∈ R
d×κ;

2. Ensure tight approximation: solve the optimization

problem

min
αz

‖z −Bzαz‖2, subject to α⊤

z e = 1, (1)

where e is a vector of ones. The problem has a closed

form solution.

Then the coding result α ∈ R
p of z is obtained by placing

the elements of αz into the corresponding positions of

a p-dimensional vector and leaving the rest to be zeros.

The algorithm can be seen as one way of sparse coding,

because α is very sparse. But the implementation is much

simpler and the computation is much faster than traditional

sparse coding, because there is no need to solve the L1-

norm regularized optimization problem. On the other hand,

we empirically find that the performance of this simple

LCC coding is often comparable or better than traditional

sparse coding for image classification. In addition, the

algorithm can also be explained as a simple extension of

vector quantization (VQ) coding, which can be recovered

by setting κ = 1.

3.2. Super­vector Coding (SVC)

SVC is another way to extend VQ, which explores

the geometry of data distribution. Suppose a codebook

B = [b1, . . . , bp] ∈ R
d×p is obtained by running K-means

algorithm. For a descriptor z, the coding procedure is

1. Find z’s nearest basis vector in B, whose index is i =
argminj ‖z − bj‖2;

2. Obtain the VQ coding γ ∈ R
p, where its i-th element

is one, and all others are zeros.

3. Obtain the SV coding result

β =
[(

γ1s, γ1(z − b1)
)

. . .
(

γps, γp(z − bp)
)]

,

(2)

where β ∈ R
(d+1)p, and s is a predefined small constant.

The SVC can be seen as expanding VQ with local tangent

directions, and is thus a smoother coding scheme.

At the pooling step, a linear pooling method has been

derived by smoothing the Bhattacharyya kernel. Let Z =
[zi]

n
i=1 be the set of local descriptors of an image, and

[βi]
n
i=1 be their SV codes. Assigning zi into those p vector

quantization bins, we partition Z into p groups, with sizes

proportional to ωk,
∑p

k=1 ωk = 1. Then the pooling result

for this image is

x =
1

n

n
∑

i=1

1
√
ωδ(i)

βi,

where δ(i) indicates the index of the group zi belongs to.

1691

Sets Coding scheme Descriptor Coding dimension SPM Feature dimension Data set Size(GB)

1 HOG+LBP 8,192 10 81,920 167*

2 Local coordinate coding HOG 16,384 10 163,840 187*

3 HOG+LBP 20,480 10 204,800 260*

4 HOG 32,768 8 262,144 1374

5 Super-vector coding HOG+LBP 51,200 4 204,800 1073

6 HOG 65,536 4 262,144 1374
Table 1. Extracted feature sets from ImageNet images for SVM training. The datasets with ∗ were compressed to reduce data size.

3.3. Parallel feature extraction

Depending on coding settings, the computation time for

feature extraction of one image ranges from 2 seconds

to 15 seconds on a dual quad-core 2GHz Intel Xeon

CPU machine with 16G memory (single thread is used

in computation). To process 1.2 million images, it

would take around 27 to 208 days. Furthermore, feature

extraction yields terabytes of data. It is very difficult

for a single computer to handle such huge computation

and such huge data. To speedup the computation and

accommodate the data, we choose Apache Hadoop [21]

to distribute computation over 20 machines and store data

on Hadoop distributed file system (HDFS). Hadoop is an

open source implementation of MapReduce computation

framework and a distributed file system [3]. Because

there is no interdependence in feature extraction tasks,

MapReduce computation framework is very suitable for

feature extraction. The HDFS distributes images over all

machines and performs computation on the images located

at local disks, which is called colocation. Colocation

can speedup the computation by reducing overall network

I/O cost. The most important advantage of Hadoop is

that, it provides a reliable infrastructure for large scale

computation. For example, a task can be automatically

restarted if it encounters some unexpected errors, such as

network issues or memory shortage. In our Hadoop cluster,

we only use 6 workers on each machine because of some

limitation of the machines. Thus, we have 120 workers in

total.

We totally extracted six sets of features, as shown in

Table 1. With the help of Hadoop parallel computing, the

feature sets took 6 hours to 2 days to compute, depending

on coding settings.

4. ASGD for SVM training

After feature extraction, we ended up with terabytes

of training data, as shown in Table. 1. In general, the

features by LCC are sparse even after pooling and they

are much smaller than the ones generated by supervector

coding. The largest feature set is 1.37 terabytes and non-

sparse. While one may concatenate those features to learn

an overall SVM for classification, we train SVMs separately

for each feature set and then combine SVM scores to yield

final classification. However, even training SVM for the

smallest feature set here (about 160 GB) would not be

easy. Furthermore, because the ImageNet dataset has 1000

categories, we need to train 1000 binary classifiers – the

decision of using one-against-all SVMs is because training

a joint multi-class SVM is even harder and may not have

significant performance advantage. To our best knowledge,

training SVMs on such huge datasets with so many classes

has never been reported before.

Although there exist many off-the-shelf SVM solver-

s, such as SVMlight [12], SVMperf [13] or Lib-

SVM/LIBLINEAR [8], they are not feasible for such huge

training data. This is because most of them are batch

methods, which require to go through all data to compute

gradient in each iteration and often need many iterations

(hundreds or even thousands of iterations) to reach a

reasonable solution. Even worse, most off-the-shelf batch-

type SVM solvers require to pre-load training data into

memory, which is impossible given the size of the training

data we have. Therefore, such solvers are unsuitable for

our SVM training. Indeed, LIBLINEAR recently released

an extended version that explicitly considered the memory

issue [25]. We tested it with a simplified image feature

set (HOG descriptor only with coding dimension of 4,096,

which generated 80GB training data). However, even

on such a small dataset (as compared to our largest one,

1.37TB), the LIBLINEAR solver was not able to provide

useful results after 2 weeks of running on a dual quad-

core 2GHz Intel Xeon CPU machine with 16G memory.

The slowness of the LIBLINEAR solver is not only due

to its inefficient inner-outer loop iterative structure but

also because it needs to learn as many as 1000 binary

classifiers. Therefore, we need a (much) better SVM solver,

which should be memory efficient, converge fast and have

some parallelization scheme to train 1000 binary classifiers

in parallel. To meet these needs, we propose a parallel

averaging stochastic gradient descent (ASGD) algorithm

for training SVM classifiers.

4.1. Averaging stochastic gradient descent

Let’s use binary classification as an example for de-

scribing the ASGD algorithm [18][23]. We have training

data that consists of T feature-label pairs, denoted as

{xt, yt}Tt=1, where xt is a d× 1 feature vector representing

1692

an image and yt ∈ {−1,+1} is the label of the image.

Then, the cost function for binary SVM classification can

be written as

L =

T
∑

t=1

L(w, b,xt, yt)

=

T
∑

t=1

λ

2
‖w‖2 + max

[

0, 1− yt(w
T
xt + b)

]

, (3)

wherew is d×1 SVM weight vector, λ (nonnegative scalar)

is a regularization parameter, and b (scalar) is a bias term.

Then, the gradient of w and b are

∇wL(w, b,xt, yt) =

{

λw − ytxt if ∆t < 1
λw if ∆t ≥ 1

∇bL(w, b,xt, yt) =

{

−yt if ∆t < 1
0 if ∆t ≥ 1

, (4)

where ∆t = yt(w
T
xt + b) is the margin of the data pair

{xt, yt}.

The ASGD algorithm is a modification of conventional

stochastic gradient descent (SGD) algorithms [15, 27]. For

conventional SGD, training data are fed to the algorithm one

by one, and the update rule for w and b respectively are

wt = (1− λη)wt−1 + ηytxt

bt = bt−1 + ηyt (5)

if margin ∆t is less than 1; otherwise, wt = (1− λη)wt−1

and bt = bt−1. The parameter η is step size. The above

SGD algorithm is easy to implement, but it often takes many

iterations to reach a good solution.

The ASGD algorithm is to add an averaging scheme to

the above SGD algorithm. The averaging scheme is

w̄t = (1− αt)w̄t−1 + αtwt

b̄t = (1− αt)b̄t−1 + αtbt, (6)

where αt (e.g. αt = 1/t) is averaging parameter. Note that

the averaging scheme does not affect the SGD update rule

in Eq. 5, and the averaged SVM weights, w̄T and b̄T , will

be output as the result of SVM training, not wT and bT .

The ASGD algorithm is known to have potential to

achieve the theoretically optimal performance of stochastic

gradient descent algorithms. It was shown that, asymptot-

ically the ASGD algorithm is able to achieve similar con-

vergence rate as second-order stochastic gradient descent

algorithm [18], which is often much faster than its first-

order counterpart. However, unlike the second-order SGD

that needs to compute the inverse of Hessian matrix, the

averaging is extremely simple to compute.

Despite the fact that the ASGD method has the potential

to converge fast and is simple to implement, it has not been

popular. We believe there are two main reasons. First,

the ASGD algorithm achieves asymptotic convergence

property (to gain similar performance as the second-order

stochastic gradient descent) only when the number of data

samples is sufficiently large. In fact, with insufficient

data samples, ASGD can be inferior to regular SGD.

This probably explains – it may not be able to observe

the superiority of the ASGD method when dealing with

medium-scale data. Second, for the ASGD algorithm

to achieve fast convergence, the step size η needs to be

carefully scheduled. We adopt the following step size

scheduling [23]:

η = η0
1

(1 + γη0t)c
, (7)

where η0 (e.g. η0 = 10−2), γ and c are some positive

constants, and they are problem-dependent. Typical values

for c are 1 or 2/3. Recent analysis [23] shows that it

is a good strategy to set γ to be the smallest eigenvalue

of the Hessian matrix of a stochastic objective function.

Therefore, for solving the SVM problem in Eq. 3, we set

γ = λ for the step size in Eq. 7.

There is an important implementation trick to signif-

icantly reduce the computation cost at each iteration of

ASGD [23]. A plain implementation of ASGD would need

five scalar-vector multiplications or dot products at each

iteration: one for computing margin, two for updating wt

(Eq. 5) and two for averaging (Eq. 6). We choose to perform

the following variable transform:

wt = P t
1,1vt

w̄t = P t
2,1vt + P t

2,2ut, (8)

where Pt =

[

P t
1,1 0

P t
2,1 P t

2,2

]

is a 2 × 2 projection matrix,

and vt and ut are updated in the following manner:

vt = vt−1 + ηytR1,1xt;

ut = ut−1 + ηyt(R2,1 + αtR2,2)xt, (9)

where Rt =

[

Rt
1,1 0

Rt
2,1 Rt

2,2

]

= P
−1
t , and Pt = TtPt−1

with Tt =

[

1− λη 0
αt(1 − λη) 1− αt

]

with P1 being an

identity matrix, w1 = v1 and w̄1 = u1. It is easy to check

that the update in Eq. 8 is equivalent to the update in Eq. 5

and Eq. 6 but with only three scalar-vector multiplications

or dot products: one for computing margin, and two for

the computation in Eq. 9 – the transform in Eq. 8 is not

computed until the last iteration when to output result.

4.2. Parallel training

Another important issue is how to parallelize the com-

putation for training 1000 binary SVM classifiers [2].

1693

Apparently, the training of the binary classifiers can be

done independently. However, in contrast to the case

where a single machine is used to train all classifiers and

the major bottleneck is on computation, using a large

number of machines for training will suffer from file I/O

bottleneck since one of our training datasets is as large as

1.37 terabyte. If the file I/O bandwith is 20MB/second,

simply loading/copying the dataset would take 19 hours.

Therefore, we hope to load data as less times as possible

while not incurring the computation bottleneck.

Our strategy here is to do memory sharing on each mul-

ticore machine. Each machine launches several programs

to train different subset of the 1000 binary classifiers, and

the programs are synchronized to train on the same chunk of

training data. The training data is shared by all the programs

on a machine through careful memory sharing. Therefore,

the multiple programs only need to load data once (for

each epoch). Such memory sharing scheme significantly

reduces file loading traffic and speeds up SVM training

dramatically.

5. Results

5.1. The performance of ASGD method for SVM
training

As aforementioned, the major challenge of the large-

scale ImageNet classification is on training SVMs with

terabytes of training data and as many as 1000 categories.

This paper proposes a parallel ASGD method that is aimed

to have fast convergence and parallel computation. Fig. 3

shows the convergence comparison between the ASGD

method and the regular SGD method. Both methods were

performed on the dataset 5 in Table 1 – it is about 1 terabyte

in total. We see that the ASGD method converged very fast.

It reached fairly good solution after 5 iterations. In contrast,

SGD (without averaging) converges much more slowly. It

would take tens of iterations to reach a similarly good

solution. For this specific dataset, each epoch took about 20

hours on three 8-core machines (only 6 programs running

in parallel on each machine due to some limitations).

Therefore, ASGD took about 4 days to finish SVM training

while the regular SGD would have taken weeks if not

months.

5.2. ImageNet classification results

With the proposed ASGD method and 12 eight-core

machines, we were able to train 1000-class SVM classifiers

for all those 6 feature sets listed in Table 1 within one

week. Classification on each feature set outputs a set of

SVM sores, and we combined them linearly to yield final

prediction.

As a result, our classification system achieved 52.9%
in classification accuracy and 71.8% in top 5 hit rate.

1 2 3 4 5
40

45

50

55

60

65

70

Epochs

T
o

p
 5

 h
it
 r

a
te

 (
%

)

SGD

Averaging SGD

Figure 3. The convergence comparison between ASGD and

regular SGD.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Accuracy

Histogram of top 5 accuracy

Figure 4. The histogram of the top 5 hit rate of the 1000 classes in

ImageNet dataset.

Indeed, we see a huge improvement in performance from

the baseline that was reported recently [6], which achieved

about 20% in classification rate. Fig. 4 shows the histogram

of the top 5 hit rate on 1000 classes. We see that the top 5 hit

rate is mostly concentrated in the range of 60 ∼ 90% while

it is over 90% for some classes but below 30% for some

other classes. The easy classes include odometer, monarch

butterfly, cliff dwelling, lunar crater, bonsai, trolleybus,

geyser, snowplow, etc; the difficult classes include China

tree, logwood tree, shingle oak, red beech, cap opener,

Kentucky coffee tree, teak, alder tree, iron tree, grass pink,

etc. The detailed top 5 hit rate for each of the 1000 classes

is illustrated in Fig. 5.

6. Discussion

We have shown how to train an image classification

system on the large-scale ImageNet dataset (1.2 million im-

ages) with many classes (1000 classes). We achieved state-

1694

of-the-art performance on the ImageNet dataset: 52.9%
in classification accuracy and 71.9% in top 5 hit rate.

The key factors in our system are fast feature extraction

and SVM training. We developed a parallel averaging

stochastic gradient descent (ASGD) algorithm for SVM

training, which is able to handle terabytes of data and 1000

classes.

In this paper, we observed very fast convergence from

the ASGD algorithm. But we are still not able to

quantitatively connect the superior empirical performance

with existing theoretical analysis, most of which focuses on

analyzing the asymptotic convergence property of ASGD.

We will study how many training data samples would

be needed for ASGD to enter its asymptotic convergence

regime. Work in [23] has done some very interesting anal-

ysis in this regard. Meanwhile, we plan to systematically

compare the ASGD method with other SGD methods (such

as Pegasos [20]) for large-scale image classification.

References

[1] http://yann.lecun.com/exdb/mnist/.

[2] E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui.

Psvm: Parallelizing support vector machines on distributed

computers. Advances in Neural Information Processing

Systems, 20:16, 2007.

[3] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and

K. Olukotun. Map-reduce for machine learning on multicore.

In Advances in Neural Information Processing Systems 19:

Proceedings of the 2006 Conference, page 281. The MIT

Press, 2007.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine

Learning, 20:273–297, 1995.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.

[6] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does

classifying more than 10,000 image categories tell us?

ECCV, 2010.

[7] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2010 (VOC2010) Results. http://www.pascal-

network.org/challenges/VOC/voc2010/workshop/index.html.

[8] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.

Lin. Liblinear: A library for large linear classification. J.

Mach. Learn. Res., 9, June 2008.

[9] L. Fei-Fei, R. Fergus, and P. Peron. Learning generative

visual models from few training examples: an incremental

bayesian approach tested on 101 object categories. In IEEE.

CVPR 2004, Workshop on Generative-Model Based Vision,

2004.

[10] R. Fergus, P. Perona, and A. Zisserman. Object class

recognition by unsupervised scale-invariant learning. In

IEEE Conf. on Computer Vision and Pattern Recognition,

volume 2, pages 264–271, Wisconsin, WI, June16 - 22 2003.

[11] G. Griffin, A. Holub, and P. Perona. Caltech-256 object

category dataset. Technical Report 7694, California Institute

of Technology, 2007.

[12] T. Joachims. Making large-scale svm learning practical.

LS8-Report, 24, Universitt Dortmund, LS VIII-Report,

1998.

[13] T. Joachims. Training linear svms in linear time. In Pro-

ceedings of the ACM Conference on Knowledge Discovery

and Data Mining, 2006.

[14] S. Lazebnik, C. Achmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In IEEE Conf. on Computer Vision and

Pattern Recognition, volume 2, pages 2169–2178, New York

City, June17 - 22 2006.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86:2278–2324, 1998.

[16] D. G. Lowe. Distinctive image features from scale invariant

keypoints. Int’l Journal of Computer Vision, 60(2):91–110,

2004.

[17] T. Ojala, M. Pietikainen, and D. Harwood. A comparative

study of texture measures with classification based on feature

distributions. Pattern Recognition, 29:51–59, 1996.

[18] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic

approximation by averaging. SIAM J. Control Optim, 30,

July 1992.

[19] B. C. Russell, A. Torralba, K. P. Murphy, and W. T.

Freeman. Labelme: a database and web-based tool for image

annotation. International Journal of Computer Vision, 77(1-

3):157–173, 2008.

[20] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-

mal estimated sub-gradient solver for svm. In Proceedings

of the 24th international conference on Machine learning,

ICML ’07, 2007.

[21] T. White. Hadoop: The Definitive Guide. O’Reilly Media,

Inc, 2010.

[22] S. Y. X. Wang, T. X. Han. An hog-lbp human detector with

partial occlusion handling. In ICCV, 2009.

[23] W. Xu. Towards optimal one pass large scale learning

with averaged stochastic gradient descent. Technical Report

2009-L102, NEC Labs America.

[24] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial

pyramid matching using sparse coding for image classifica-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition, 2009.

[25] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large

linear classification when data cannot fit in memory. In Pro-

ceedings of the 16th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’10, 2010.

[26] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local

coordinate coding. In NIPS’ 09, 2009.

[27] T. Zhang. Solving large scale linear prediction problems

using stochastic gradient descent algorithms. In Proceedings

of the twenty-first international conference on Machine

learning, ICML ’04, 2004.

[28] X. Zhou, K. Yu, T. Zhang, and T. Huang. Image classification

using super-vector coding of local image descriptors. In

ECCV, 2010.

1695

Figure 5. The top 5 hit rates on the 1000 categories in the ImageNet Challenge. The hit rate of each category is indicated by a red bar left

to the image representing the category.

1696

