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ABSTRACT

Learning goal-oriented dialogues by means of deep reinforce-
ment learning has recently become a popular research topic.
However, commonly used policy-based dialogue agents of-
ten end up focusing on simple utterances and suboptimal
policies. To mitigate this problem, we propose a class of
novel temperature-based extensions for policy gradient meth-
ods, which are referred to as Tempered Policy Gradients
(TPGs). On a recent AI-testbed, i.e., the GuessWhat?! game,
we achieve significant improvements with two innovations.
The first one is an extension of the state-of-the-art solutions
with Seq2Seq and Memory Network structures that leads
to an improvement of 7%. The second one is the applica-
tion of our newly developed TPG methods, which improves
the performance additionally by around 5% and, even more
importantly, helps produce more convincing utterances.

Index Terms— Goal-Oriented Dialog System, Deep Re-
inforcement Learning, Recurrent Neural Network

1. INTRODUCTION

In recent years, deep learning has shown convincing perfor-
mance in various areas such as image recognition, speech
recognition, and natural language processing (NLP). Deep
neural nets are capable of learning complex dependencies
from huge amounts of data and its human generated annota-
tions in a supervised way. In contrast, reinforcement learning
agents [2] can learn directly from their interactions with the
environment without any supervision and surpass human per-
formance in several domains, for instance in the game of GO
[3], as well as many computer games [4]. In this paper we are
concerned with the application of both approaches to goal-
oriented dialogue systems [5, 6, 7, 8, 9, 10, 11, 7, 12, 13, 14],
a problem that has recently caught the attention of machine
learning researchers. De Vries et al. [6] have proposed as
AI-testbed a visual grounded object guessing game called
GuessWhat?!. Das et al. [7] formulated a visual dialogue
system which is about two chatbots asking and answering
questions to identify a specific image within a group of im-
ages. More practically, dialogue agents have been applied
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to negotiate a deal [12] and access certain information from
knowledge bases [13]. The essential idea in these systems
is to train different dialogue agents to accomplish the tasks.
In those papers, the agents have been trained with policy
gradients, i.e. REINFORCE [15].

In order to improve the exploration quality of policy gra-
dients, we present three instances of temperature-based meth-
ods. The first one is a single-temperature approach which is
very easy to apply. The second one is a parallel approach with
multiple temperature policies running concurrently. This sec-
ond approach is more demanding on computational resources,
but results in more stable solutions. The third one is a tem-
perature policy approach that dynamically adjusts the tem-
perature for each action at each time-step, based on action
frequencies. This dynamic method is more sophisticated and
proves more efficient in the experiments. In the experiments,
all these methods demonstrate better exploration strategies in
comparison to the plain policy gradient.

We demonstrate our approaches using a real-world dataset
called GuessWhat?!. The GuessWhat?! game [6] is a vi-
sual object discovery game between two players, the Ora-
cle and the Questioner. The Questioner tries to identify an
object by asking the Oracle questions. The original works
[6, 8] first proposed supervised learning to simulate and op-
timize the game. Strub et al. [8] showed that the perfor-
mance could be improved by applying plain policy gradient
reinforcement learning, which maximizes the game success
rate, as a second processing step. Building on these previ-
ous works, we propose two network architecture extensions.
We utilize a Seq2Seq model [16] to process the image along
with the historical dialogues for question generation. For the
guessing task, we develop a Memory Network [17] with At-
tention Mechanism [18] to process the generated question-
answer pairs. We first train these two models using the plain
policy gradient and use them as our baselines. Subsequently,
we train the models with our new TPG methods and com-
pare the performances with the baselines. We show that the
TPG method is compatible with state-of-the-art architectures
such as Seq2Seq and Memory Networks and contributes or-
thogonally to these advanced neural architectures. To the best
of our knowledge, the presented work is the first to propose
temperature-based policy gradient methods to leverage explo-



ration and exploitation in the field of goal-oriented dialogue
systems. We demonstrate the superior performance of our
TPG methods by applying it to the GuessWhat?! game.

2. PRELIMINARIES

In our notation, we use x to denote the input to a policy net-
work π, and xi to denote the i-th element of the input vector.
Similarly, w denotes the weight vector of π, and wi denotes
the i-th element of the weight vector of that π. The output
y is a multinoulli random variable with N states that follows
a probability mass function, f(y = n | π(x | w)), where
ΣNn=1f(y = n | π(x | w)) = 1 and f(·) ≥ 0. In a nutshell, a
policy network parametrizes a probabilistic unit that produces
the sampled output, mathematically, y ∼ f(π(x | w)).

Typically, the expected value of the accumulated re-
ward, i.e. return, conditioned on the policy network param-
eters E(r | w) is used. Here, E denotes the expectation
operator, r the accumulated reward signal, and w the net-
work weight vector. The objective of reinforcement learning
is to update the weights in a way that maximizes the ex-
pected return at each trial. In particular, the REINFORCE
updating rule is: ∆wi = αi(r − bi)ei, where ∆wi de-
notes the weight adjustment of weight wi, αi is a nonneg-
ative learning rate factor, and bi is a reinforcement base-
line. The ei is the characteristic eligibility of wi, defined as
ei = (∂f/∂wi)/f = ∂lnf/∂wi. Williams [15] has proved
that the updating quantity, (r − bi)∂lnf/∂wi, represents an
unbiased estimate of ∂E(r | w)/∂wi.

3. TEMPERED POLICY GRADIENT

In order to improve the exploration quality of REINFORCE
in the task of optimizing policy-based dialogue agents, we
attempt to find the optimal compromise between exploration
and exploitation. In TPGs we introduce a parameter τ , the
sampling temperature of the probabilistic output unit, which
allows us to explicitly control the strengths of the exploration.

3.1. Exploration and Exploitation

The trade-off between exploration and exploitation is one of
the great challenges in reinforcement learning [2]. To obtain
a high reward, an agent must exploit the actions that have al-
ready proved effective in getting more rewards. However, to
discover such actions, the agent must try actions, which ap-
pear suboptimal, to explore the action space. In a stochastic
task like text generation, each action, i.e. a word, must be
tried many times to find out whether it is a reliable choice
or not. The exploration-exploitation dilemma has been inten-
sively studied over many decades [19, 20, 21]. Finding the
balance between exploration and exploitation is considered
crucial for the success of reinforcement learning [22].

3.2. Temperature Sampling

In text generation, it is well-known that the simple trick of
temperature adjustment is sufficient to shift the language
model to be more conservative or more diversified [23]. In
order to control the trade-off between exploration and ex-
ploitation, we borrow the strength of the temperature param-
eter τ ≥ 0 to control the sampling. The output probability of
each word is transformed by a temperature function as:

fτ (y = n | π(x | w)) =
f(y = n | π(x | w))

1
τ

ΣNm=1f(y = m | π(x | w))
1
τ

.

We use notation fτ to denote a probability mass function f
that is transferred by a temperature function with temperature
τ . When the temperature is high, τ > 1, the distribution
becomes more uniform; when the temperature is low, τ < 1,
the distribution appears more spiky.

3.3. Tempered Policy Gradient Methods

Here, we introduce three instances of TPGs in the domain
of goal-oriented dialogues, including single, parallel, and dy-
namic tempered policy gradient methods.

Single-TPG: The Single-TPG method simply uses a
global temperature τglobal during the whole training pro-
cess, i.e., we use τglobal > 1 to encourage exploration. The
forward pass is represented mathematically as: yτglobal ∼
fτglobal(π(x | w)), where π(x | w) represents a policy neu-
ral network that parametrizes a distribution fτglobal over the
vocabulary, and yτglobal means the word sampled from this
tempered word distribution. After sampling, the weight of
the neural net is updated using,

∆wi = αi(r − bi)∂lnf(yτglobal | π(x | w))/∂wi.

Noteworthy is that the actual gradient, ∂lnf(yτglobal | π(x |
w))/∂wi, depends on the sampled word, yτglobal , however,
does not depend directly on the temperature, τ . With Single-
TPG and τ > 1, the entire vocabulary of a dialogue agent is
explored more efficiently than by REINFORCE, because non-
preferred words have a higher probability of being explored.

Parallel-TPG: A more advanced version of Single-TPG
is the Parallel-TPG that deploys several Single-TPGs con-
currently with different temperatures, τ1, ..., τn, and updates
the weights based on all generated samples. During the for-
ward pass, multiple copies of the neural nets parameterize
multiple word distributions. The words are sampled in par-
allel at various temperatures, mathematically, yτ1 , ..., yτn ∼
fτ1,...,τn(π(x | w)). After sampling, in the backward pass the
weights are updated with the sum of gradients. The formula
is given by

∆wi = Σkαi(r − bi)∂lnf(yτk | π(x | w))/∂wi,

where k ∈ {1, ..., n}. The combinational use of higher and
lower temperatures ensures both exploration and exploitation



at the same time. The sum over weight updates of paral-
lel policies gives a more accurate Monte Carlo estimate of
∂E(r | w)/∂wi, due to the nature of Monte Carlo meth-
ods [24]. Thus, compared to Single-TPG, we would argue
that Parallel-TPG is more robust and stable, although Parallel-
TPG needs more computational power. However, these com-
putations can easily be distributed in a parallel fashion using
state-of-the-art graphics processing units.

Dynamic-TPG: As a third variant, we introduce the
Dynamic-TPG, which is the most sophisticated approach in
the current TPG family. The essential idea is that we use a
heuristic function h to assign the temperature τ to the word
distribution at each time step, t. The temperature is bounded
in a predefined range [τmin, τmax]. The heuristic function we
used here is based upon the term frequency inverse document
frequency, tf-idf [25]. In the context of goal-oriented dia-
logues, we use the counted number of each word as term fre-
quency tf and the total number of generated dialogues during
training as document frequency df. We use the word that has
the highest probability to be sampled at current time-step, y∗t ,
as the input to the heuristic function h. Here, y∗t is the maxi-
mizer of the probability mass function f . Mathematically, it
is defined as y∗t = argmax(f(π(x | w))). We propose that
tf-idf(y∗t ) approximates the concentration level of the distri-
bution, which means that if the same word is always sampled
from a distribution, then the distribution is very concentrated.
Too much concentration prevents the model from exploration,
so that a higher temperature is needed. In order to achieve
this effect, the heuristic function is defined as

τht = h(tf-idf(y∗t ))

= τmin + (τmax − τmin)
tf-idf(y∗t )− tf-idfmin
tf-idfmax − tf-idfmin

.

With this heuristic, words that occur very often are depressed
by applying a higher temperature to those words, making
them less likely to be selected in the near future. In the for-
ward pass, a word is sampled using yτ

h
t ∼ fτht (π(x | w)). In

the backward pass, the weights are updated correspondingly:

∆wi = αi(r − bi)∂lnf(yτ
h
t | π(x | w))/∂wi,

where τht is the temperature calculated from the heuris-
tic function. Compared to Parallel-TPG, the advantage of
Dynamic-TPG is that it assigns temperature more appropri-
ately, without increasing the computational load.

4. GUESSWHAT?! GAME

We evaluate our methods using a recent testbed for AI,
called the GuessWhat?! game [6], available at https:
//guesswhat.ai. The dataset consists of 155 k dia-
logues, including 822 k question-answer pairs, each com-
posed of around 5 k words, about 67 k images [26] and 134 k
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Fig. 1: Oracle model

objects. The game is about visual object discovery trough a
multi-round QA among different players.

Formally, a GuessWhat?! game is represented by a tuple
(I,D,O, o∗), where I ∈ RH×W denotes an image of height
H and width W ; D represents a dialogue composed of M
rounds of question-answer pairs (QAs), D = (qm, am)Mm=1;
O stands for a list of K objects O = (ok)Kk=1; and o∗ is the
target object. Each question is a sequence of words, qm =
{ym,1, ......, ym,Nm} with length Nm. The words are taken
from a defined vocabulary V , which consists of the words and
a start token and an end token. Each answer is either yes, no,
or not applicable, i.e. am ∈ {yes, no, n.a.}. For each object
ok, there is a corresponding object category ck ∈ {1, ......, C}
and a pixel-wise segmentation mask Sk ∈ {0, 1}H×W . Fi-
nally, we use colon notation (:) to select a subset of a se-
quence, for instance, (q, a)1:m refers to the first m rounds
of QAs in a dialogue.

4.1. Models and Pretraining

Following [8], we first train all three models in a supervised
fashion.

Oracle: The task of the Oracle is to answer questions
regarding to the target object. We outline here the simple
neural network architecture that achieved the best perfor-
mance in the study of [6], and which we also used in our
experiments. The input information used here is of three
modalities, namely the question q, the spatial information
x∗spatial and the category c∗ of the target object. For en-
coding the question, de Vries et al. first use a lookup ta-
ble to learn the embedding of words, then use a one layer
long-short-term-memory (LSTM) [27] to encode the whole
question. For spatial information, de Vries et al. extract an
8-dimensional vector of the location of the bounding box
[xmin, ymin, xmax, ymax, xcenter, ycenter, wbox, hbox],
where x, y denote the coordinates and wbox, hbox denote
the width and height of the bounding box, respectively. De
Vries et al. normalize the image width and height so that the
coordinates range from -1 to 1. The origin is at the image
center. The category embedding of the object is also learned
with a lookup table during training. At the last step, de Vries
et al. concatenate all three embeddings into one feature vec-
tor and fed it into a one hidden layer multilayer perceptron
(MLP). The softmax output layer predicts the distribution,
Oracle := p(a | q, c∗, x∗spatial), over the three classes,
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including no, yes, and not applicable. The model is trained
using the negative log-likelihood criterion. The Oracle struc-
ture is shown in Fig. 1.

Question-Generator: The goal of the Question-Generator
(QGen) is to ask the Oracle meaningful questions, qm+1,
given the whole image, I , and the historical question-answer
pairs, (q, a)1:m. In previous work [8], the state transition
function was modelled as an LSTM, which was trained using
whole dialogues so that the model memorizes the historical
QAs. We refer to this as dialogue level training. We develop
a novel QGen architecture using a modified version of the
Seq2Seq model [16]. The modified Seq2Seq model enables
question level training, which means that the model is fed
with historical QAs, and then learns to produce a new ques-
tion. Following [8], we first encode the whole image into a
fixed-size feature vector using the VGG-net [28]. The fea-
tures come from the fc-8 layer of the VGG-net. For process-
ing historical QAs, we use a lookup table to learn the word
embeddings, then again use an LSTM encoder to encode the
history information into a fixed-size latent representation, and
concatenate it with the image representation:

sencm,Nm = encoder((LSTM(q, a)1:m),VGG(I)).

The encoder and decoder are coupled by initializing the
decoder state with the last encoder state, mathematically,
sdecm+1,0 = sencm,Nm. The LSTM decoder generates each word
based on the concatenated representation and the previous
generated word (note the first word is a start token):

ym+1,n = decoder(LSTM((ym+1,n−1, s
dec
m+1,n−1)).

The decoder shares the same lookup table weights as the en-
coder. The Seq2Seq model, consisting of the encoder and
the decoder, is trained end-to-end to minimize the negative
log-likelihood cost. During testing, the decoder gets a start
token and the representation from the encoder, and then gen-
erates each word at each time step until it encounters a ques-
tion mark token, QGen := p(ym+1,n | (q, a)1:m, I). The
output is a complete question. After several question-answer
rounds, the QGen outputs an end-of-dialogue token, and stops
asking questions. The overall structure of the QGen model is
illustrated in Fig. 2.

Guesser: The goal of the Guesser model is to find out
which object the Oracle model is referring to, given the com-
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plete history of the dialogue and a list of objects in the im-
age, p(o∗ | (q, a)1:M , x

O
spatial, c

O). The Guesser model has
access to the spatial, xOspatial, and category information, cO,
of the objects in the list. The task of the Guesser model is
challenging because it needs to understand the dialogue and
to focus on the important content, and then guess the object.
To accomplish this task, we decided to integrate the Memory
[17] and Attention [18] modules into the Guesser architecture
used in the previous work [8]. First, we use an LSTM header
to process the varying lengths of question-answer pairs in par-
allel into multiple fixed-size vectors. Here, each QA-pair has
been encoded into some facts, Factm = LSTM((q, a)m),
and stored into a memory base. Later, we use the sum of
the spatial and category embeddings of all objects as a key,
Key1 = MLP(xOspatial, c

O), to query the memory and calcu-
late an attention mask, Attention1(Factm) = Factm�key1,
over each fact. Next, we use the sum of attended facts and
the first key to calculate the second key. Further, we use the
second key to query the memory base again to have a more
accurate attention. These are the so called “two-hops" of at-
tention in the literature [17]. Finally, we compare the attended
facts with each object embedding in the list using a dot prod-
uct. The most similar object to these facts is the prediction,
Guesser := p(o∗ | (q, a)1:M , x

O
spatial, c

O). The intention of
using the attention module here is to find out the most relevant
descriptions or facts concerning the candidate objects. We
train the whole Guesser network end-to-end using the nega-
tive log-likelihood criterion. A more graphical description of
the Guesser model is shown in Fig. 3.

4.2. Reinforcement Learning

Now, we post-train the QGen and the Guesser model with
reinforcement learning. We keep the Oracle model fixed. In
each game episode, when the models find the correct object,
r = 1, otherwise, r = 0.

Next, we can assign credits for each action of the QGen
and the Guesser models. In the case of the QGen model, we
spread the reward uniformly over the sequence of actions in
the episode. The baseline function, b, used here is the running
average of the game success rate. Consider that the Guesser
model has only one action in each episode, i.e., taking the
guess. If the Guesser finds the correct object, then it gets an



immediate reward and the Guesser’s parameters are updated
using the REINFORCE rule without baseline. The QGen is
trained using the following four methods.

REINFORCE: The baseline method used here is REIN-
FORCE [15]. During training, in the forward pass the words
are sampled with τ = 1, ym+1,n ∼ f(QGen(x | w)). In the
backward pass, the weights are updated using REINFORCE,
w = w + α(r − b)∇wlnf(ym+1,n | QGen(x | w)).

Single-TPG: We use temperature τglobal = 1.5 during
training to encourage exploration, mathematically, yτglobalm+1,n ∼
fτglobal(QGen(x | w)). In the backward pass, the weights
are updated using w = w + α(r − b)∇wlnf(y

τglobal
m+1,n |

QGen(x | w)).
Parallel-TPG: For Parallel-TPG, we use two temper-

atures τ1 = 1.0 and τ2 = 1.5 to encourage the explo-
ration. The words are sampled in the forward pass using
yτ1m+1,n, y

τ2
m+1,n ∼ fτ1,τ2(QGen(x | w)). In the backward

pass, the weights are updated using w = w + Σ2
k=1α(r −

b)∇wlnf(yτkm+1,n | QGen(x | w)).
Dynamic-TPG: The last method we evaluated is Dynamic-

TPG. We use a heuristic function to calculate the tempera-
ture for each word at each time step: τhm+1,n = τmin +

(τmax−τmin)
tf-idf(y∗m+1,n)−tf-idfmin

tf-idfmax−tf-idfmin
,where we set τmin = 0.5,

τmax = 1.5, and set tf-idfmin = 0, tf-idfmax = 8. Af-
ter the calculation of τhm+1,n, we substitute the value into
the formula at each time step and sample the next word using

y
τhm+1,n

m+1,n ∼ fτ
h
m+1,n(QGen(x | w)). In the backward pass, the

weights are updated using w = w+α(r−b)∇wlnf(y
τhm+1,n

m+1,n |
QGen(x | w)). For all four methods, we use greedy search
in evaluation.

5. EXPERIMENT

We first train all the networks in a supervised fashion, and
then optimize the QGen and the Guesser model using rein-
forcement learning. Our implementation 1 uses Torch [29].

5.1. Pretraining

We train all three models using 0.5 dropout [30] during train-
ing, using the ADAM optimizer [31]. We use a learning rate
of 0.0001 for the Oracle model and the Guesser model, and a
learning rate of 0.001 for QGen. All the models are trained
with at most 30 epochs and early stopped within five epochs
without improvement on the validation set. We report the per-
formance on the test set which consists of images not used in
training. We report the game success rate as the performance
metric for all three models, which equals to the number of
succeeded games divided by the total number of all games.
Compared to previous works [6, 8, 32], after supervised train-
ing, our models obtain a game success rate of 48.77%, that

1https://github.com/ruizhaogit/GuessWhat-TemperedPolicyGradient

# Method Accuracy
1 Strub et al., 2017 [8] 52.30%
2 Strub and de Vries, 2017 [32] 60.30%
3 Our Torch reimplementation of (# 2) 62.61%
4 (# 3) + new QGen (Seq2Seq) 63.47%
5 (# 4) + new Guesser (Memory Nets) 68.32%
6 (# 5) + new Guesser (REINFORCE) 69.66%
7 (# 6) + Single-TPG 69.76%
8 (# 6) + Parallel-TPG 73.86%
9 (# 6) + Dynamic-TPG 74.31%

Table 1: Performance comparison and ablation tests

is 4% higher than state-of-the-art methods [32], which has
44.6% accuracy.

5.2. Reinforcement Learning

We first initialize all models with pre-trained parameters from
supervised learning and then post-train the QGen using either
REINFORCE or TPG for 80 epochs. We update the parame-
ters using stochastic gradient descent (SGD) with a learning
rate of 0.001 and a batch size of 64. In each epoch, we sample
each image in the training set once and randomly pick one of
the objects as a target. We track the running average of the
game success rate and use it directly as the baseline, b, in RE-
INFORCE. We limit the maximum number of questions to 8
and the maximum number of words to 12. Simultaneously, we
train the Guesser model using REINFORCE without baseline
and using SGD with a learning rate of 0.0001. The perfor-
mance comparison is shown in Tab. 1.

Ablation Study: From Tab. 1 (# 2 & 3), we see that our
reimplementation using Torch [29] achieves a comparable
performance compared to the original TensorFlow imple-
mentation [32]. We use our reimplementation as the baseline.

Upon the baseline, the new QGen model with Seq2Seq
structure improves the performance by about 1%, see Tab. 1
(# 3 & 4). With the Seq2Seq structure, our QGen model is
trained in question level. This means that the model first
learns to query meaningfully, step by step. Eventually, it
learns to conduct a meaningful dialog. Compared to directly
learning to manage a strategic conversation, this bottom-up
training procedure helps the model absorb knowledge, be-
cause it breaks large tasks down into smaller, more manage-
able pieces. This makes the learning for QGen much easier.

The next improvement is because of our new Guesser
model, which uses Memory Network with two-hops atten-
tion [17]. The memory and attention mechanisms bring an
improvement of 4.85%, as shown in Tab. 1 (# 4 & 5). Fur-
thermore, we train the new Guesser model additionally via
REINFORCE (# 6). In this way, the Guesser and the QGen
learn to cooperate with each other and improve the perfor-
mance by another 1.34%, as shown in Tab. 1 (# 5 & 6).



Image Policy Gradient Tempered Policy Gradient

Is it in left? No
Is it in front? No
Is it in right? Yes
Is it in middle? Yes
Is it person? No
Is it ball? No
Is it bat? No
Is it car? Yes
Status: Failure

Is it a person? No
Is it a vehicle? Yes
Is it a truck? Yes
Is it in front of photo? No
In the left half? No
In the middle of photo? Yes
Is it to the right photo? Yes
Is it in the middle of photo? Yes
Status: Success

Is it in left? No
Is it in front? Yes
Is it in right? No
Is it in middle? Yes
Is it person? No
Is it giraffe? Yes
Is in middle? Yes
Is in middle? Yes
Status: Failure

Is it a giraffe? Yes
In front of photo? Yes
In the left half? Yes
Is it in the middle of photo? Yes
Is it to the left of photo? Yes
Is it to the right photo? No
In the left in photo? No
In the middle of photo? Yes
Status: Success

Table 2: Some samples generated by our improved models using REINFORCE (left column: “Policy Gradient”) and Dynamic-TPG (right
column: “Tempered Policy Gradient”). The green bounding boxes highlight the target objects; the red boxes highlight the wrong guesses.

Here, we take a closer look at the improvement brought by
TPGs. From Tab. 1, we see that compared to the REINFORCE-
trained models (# 6), Single-TPG (# 7) with τglobal = 1.5
achieves a comparable performance. With two different tem-
peratures τ1 = 1.0 and τ2 = 1.5, Parallel-TPG (# 8) achieves
an improvement of approximately 4%. Parallel-TPG requires
more computational resources. Compared to Parallel-TPG,
Dynamic-TPG only uses the same computational power as
REINFORCE does and still gives a larger improvement by
using a dynamic temperature, τht ∈ [0.5, 1.5]. After compar-
ison, we can see that the best model is Dynamic-TPG (# 9),
which gives a 4.65% improvement upon new models (# 6).

TPG Dialogue Samples: The generated dialogue sam-
ples in Tab. 2 can give some interesting insights. First of all,
the sentences generated from TPG-trained models are on av-
erage longer and use slightly more complex structures, such
as “Is it in the middle of photo?" instead of a simple form “Is
it in middle?". Secondly, TPGs enable the models to explore
better and comprehend more words. For example, in the first
task (upper half of Tab. 2), both models ask about the cate-
gory. The REINFORCE-trained model can only ask with the
single word “car" to query about the vehicle category. In con-
trast, the TPG-trained model can first ask a more general cat-
egory with the word “vehicle" and follows up querying with
a more specific category “trucks". These two words “vehi-
cle" and “trucks" give much more information than the single
word “car", and help the Guesser model identify the truck
among many cars. Lastly, similar to the category case, the
models trained with TPG can first ask a larger spatial range

of the object and follow up with a smaller range. In the sec-
ond task (lower half of Tab. 2), we see that the TPG-trained
model first asks “In the left half?", which refers to all the three
giraffes in the left half, and the answer is “Yes”. Then it asks
“Is it to the left of photo?", which refers to the second left
giraffe, and the answer is “Yes”. Eventually the QGen asks
“In the left in photo?”, which refers to the most left giraffe,
and the answer is “No”. These specific questions about loca-
tions are not learned using REINFORCE. The REINFORCE-
trained model can only ask a similar question with the word
“left". In this task, there are many giraffes in the left part of
the image. The top-down spatial questions help the Guesser
model find the correct giraffe. To summarize, the TPG-trained
models use longer and more informative sentences than the
REINFORCE-trained models.

6. CONCLUSION

Our paper makes two contributions. Firstly, by extending
existing models with Seq2Seq and Memory Networks we
could improve the performance of a goal-oriented dialogue
system by 7%. Secondly, we introduced TPG, a novel class of
temperature-based policy gradient approaches. TPGs boosted
the performance of the goal-oriented dialogue systems by
another 4.7%. Among the three TPGs, Dynamic-TPG gave
the best performance, which helped the agent comprehend
more words, and produce more meaningful questions. TPG
is a generic strategy to encourage word exploration on top of
policy gradients and can be applied to any dialog agents.
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