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Abstract

In Multi-Goal Reinforcement Learning, an agent
learns to achieve multiple goals with a goal-
conditioned policy. During learning, the agent
first collects the trajectories into a replay buffer,
and later these trajectories are selected randomly
for replay. However, the achieved goals in the re-
play buffer are often biased towards the behavior
policies. From a Bayesian perspective, when there
is no prior knowledge about the target goal dis-
tribution, the agent should learn uniformly from
diverse achieved goals. Therefore, we first pro-
pose a novel multi-goal RL objective based on
weighted entropy. This objective encourages the
agent to maximize the expected return, as well
as to achieve more diverse goals. Secondly, we
developed a maximum entropy-based prioritiza-
tion framework to optimize the proposed objec-
tive. For evaluation of this framework, we com-
bine it with Deep Deterministic Policy Gradient,
both with or without Hindsight Experience Re-
play. On a set of multi-goal robotic tasks of Ope-
nAI Gym, we compare our method with other
baselines and show promising improvements in
both performance and sample-efficiency.

1. Introduction
Reinforcement Learning (RL) (Sutton & Barto, 1998) com-
bined with Deep Learning (DL) (Goodfellow et al., 2016)
has led to great successes in various tasks, such as playing
video games (Mnih et al., 2015), challenging the World Go
Champion (Silver et al., 2016), and learning autonomously
to accomplish different robotic tasks (Ng et al., 2006; Peters
& Schaal, 2008; Levine et al., 2016; Chebotar et al., 2017;
Andrychowicz et al., 2017).
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One of the biggest challenges in RL is to make the agent
learn efficiently in applications with sparse rewards. To
tackle this challenge, Lillicrap et al. (2015) developed the
Deep Deterministic Policy Gradient (DDPG), which enables
the agent to learn continuous control, such as manipulation
and locomotion. Schaul et al. (2015a) proposed Universal
Value Function Approximators (UVFAs), which general-
ize not just over states, but also over goals, and extend
value functions to multiple goals. Furthermore, to make
the agent learn faster in sparse reward settings, Andrychow-
icz et al. (2017) introduced Hindsight Experience Replay
(HER), which encourages the agent to learn from the goal-
states it has achieved. The combined use of DDPG and
HER allows the agent to learn to accomplish more complex
robot manipulation tasks. However, there is still a huge gap
between the learning efficiency of humans and RL agents.
In most cases, an RL agent needs millions of samples before
it is able to solve the tasks, while humans only need a few
samples (Mnih et al., 2015).

In previous works, the concept of maximum entropy
has been used to encourage exploration during training
(Williams & Peng, 1991; Mnih et al., 2015; Wu & Tian,
2016). Recently, Haarnoja et al. (2017) introduced Soft-
Q Learning, which learns a deep energy-based policy by
evaluating the maximum entropy of actions for each state.
Soft-Q Learning encourages the agent to learn all the poli-
cies that lead to the optimum (Levine, 2018). Furthermore,
Soft Actor-Critic (Haarnoja et al., 2018c) demonstrated a
better performance while showing compositional ability
and robustness of the maximum entropy policy in locomo-
tion (Haarnoja et al., 2018a) and robot manipulation tasks
(Haarnoja et al., 2018b). The agent aims to maximize the ex-
pected reward while also maximizing the entropy to succeed
at the task while acting as randomly as possible. Based on
maximum entropy policies, Eysenbach et al. (2018) showed
that the agent is able to develop diverse skills solely by
maximizing an information theoretic objective without any
reward function. For multi-goal and multi-task learning
(Caruana, 1997), the diversity of training sets helps the
agent transfer skills to unseen goals and tasks (Pan et al.,
2010). The variability of training samples mitigates overfit-
ting and helps the model to better generalize (Goodfellow

This paper is based on our 2018 NeurIPS Deep RL workshop
paper (Zhao & Tresp, 2019).
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Figure 1. Robot arm Fetch and Shadow Dexterous hand environment: FetchPush, FetchPickAndPlace, FetchSlide,
HandManipulateEgg, HandManipulateBlock, and HandManipulatePen.

et al., 2016). In our approach, we combine maximum en-
tropy with multi-goal RL to help the agent to achieve unseen
goals by learning uniformly from diverse achieved goals
during training.

We observe that during experience replay the uniformly sam-
pled trajectories are biased towards the behavior policies,
with respect to the achieved goal-states. Consider train-
ing a robot arm to reach a certain point in a space. At the
beginning, the agent samples trajectories using a random
policy. The sampled trajectories are centered around the
initial position of the robot arm. Therefore, the distribution
of achieved goals, i.e., positions of the robot arm, is sim-
ilar to a Gaussian distribution around the initial position,
which is non-uniform. Sampling from such a distribution is
biased towards the current policies. From a Bayesian point
of view (Murphy, 2012), the agent should learn uniformly
from these achieved goals, when there is no prior knowledge
of the target goal distribution.

To correct this bias, we propose a new objective which com-
bines maximum entropy and the multi-goal RL objective.
This new objective uses entropy as a regularizer to encour-
age the agent to traverse diverse goal-states. Furthermore,
we derive a safe lower bound for optimization. To optimize
this surrogate objective, we implement maximum entropy-
based prioritization as a simple yet effective solution.

2. Preliminary
2.1. Settings

Environments: We consider multi-goal reinforcement
learning tasks, like the robotic simulation scenarios pro-
vided by OpenAI Gym (Plappert et al., 2018), where six
challenging tasks are used for evaluation, including push,
slide, pick & place with the robot arm, as well as hand ma-
nipulation of the block, egg, and pen, as shown in Figure 1.
Accordingly, we define the following terminologies for this
specific kind of multi-goal scenarios.

Goals: The goals g are the desired positions and the orienta-
tions of the object. Specifically, we use ge, with e standing
for environment, to denote the real goal which serves as the
input from the environment, in order to distinguish it from
the achieved goal used in Hindsight settings (Andrychowicz
et al., 2017). Note that in this paper we consider the case
where the goals can be represented by states, which leads

us to the concept of achieved goal-state gs, with details
explained below.

States, Goal-States and Achieved Goals: The state s con-
sists of two sub-vectors, the achieved goal-state sg, which
represents the position and orientation of the object being
manipulated, and the context state sc, i.e. s = (sg‖sc),
where ‖ denotes concatenation.

In our case, we define gs = sg to represent an achieved
goal that has the same dimension as the real goal ge from
the environment. The context state sc contains the rest
information about the state, including the linear and angular
velocities of all robot joints and of the object. The real goals
ge can be substituted by the achieved goals gs to facilitate
learning. This goal relabeling technique was proposed by
Andrychowicz et al. (2017) as Hindsight Experience Replay.

Achieved Goal Trajectory: A trajectory consisting solely
of goal-states is represented as τ g. We use τ g to de-
note all the achieved goals in the trajectory τ , i.e., τ g =
(gs0, ..., g

s
T ).

Rewards: We consider sparse rewards r. There is a toler-
ated range between the desired goal-states and the achieved
goal-states. If the object is not in the tolerated range of
the real goal, the agent receives a reward signal -1 for each
transition; otherwise, the agent receives a reward signal 0.

Goal-Conditioned Policy: In multi-goal settings, the agent
receives the environmental goal ge and the state input
s = (sg‖sc). We want to train a goal-conditioned policy to
effectively generalize its behavior to different environmental
goals ge.

2.2. Reinforcement Learning

We consider an agent interacting with an environment. We
assume the environment is fully observable, including a set
of state S, a set of action A, a distribution of initial states
p(s0), transition probabilities p(st+1 | st, at), a reward
function r: S ×A → R, and a discount factor γ ∈ [0, 1].

Deep Deterministic Policy Gradient: For continuous con-
trol tasks, the Deep Deterministic Policy Gradient (DDPG)
shows promising performance, which is essentially an off-
policy actor-critic method (Lillicrap et al., 2015).

Universal Value Function Approximators: For multi-
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goal continuous control tasks, DDPG can be extended by
Universal Value Function Approximators (UVFA) (Schaul
et al., 2015a). UVFA essentially generalizes the Q-function
to multiple goal-states, where the Q-value depends not only
on the state-action pairs, but also on the goals.

Hindsight Experience Replay: For robotic tasks, if the
goal is challenging and the reward is sparse, the agent could
perform badly for a long time before learning anything.
Hindsight Experience Replay (HER) encourages the agent to
learn from whatever goal-states it has achieved. Andrychow-
icz et al. (2017) show that HER makes training possible in
challenging robotic tasks via goal relabeling, i.e., randomly
substituting real goals with achieved goals.

2.3. Weighted Entropy

Guiaşu (1971) proposed weighted entropy, which is an ex-
tension of Shannon entropy. The definition of weighted
entropy is given as

Hw
p = −

K∑
k=1

wkpk log pk, (1)

where wk is the weight of the elementary event and pk is
the probability of the elementary event.

3. Method
In this section, we formally describe our method, includ-
ing the mathematical derivation of the Maximum Entropy-
Regularized Multi-Goal RL objective and the Maximum
Entropy-based Prioritization framework.

3.1. Multi-Goal RL

In this paper, we consider multi-goal RL as goal-conditioned
policy learning (Schaul et al., 2015a; Andrychowicz et al.,
2017; Rauber et al., 2017; Plappert et al., 2018). We denote
random variables by upper case letters and the values of
random variables by corresponding lower case letters. For
example, let Val(X) denote the set of valid values to a
random variable X , and let p(x) denote the probability
function of random variable X .

Consider that an agent receives a goal ge ∈ Val(Ge) at
the beginning of the episode. The agent interacts with the
environment for T timesteps. At each timestep t, the agent
observes a state st ∈ Val(St) and performs an action at ∈
Val(At). The agent also receives a reward conditioned on
the input goal r(st, ge) ∈ R.

We use τ = s1, a1, s2, a2, . . . , sT−1, aT−1, sT to denote a
trajectory, where τ ∈ Val(T ). We assume that the probabil-
ity p(τ | ge,θ) of trajectory τ , given goal ge and a policy

parameterized by θ ∈ Val(Θ), is given as

p(τ | ge,θ) = p(s1)

T−1∏
t=1

p(at | st, ge,θ)p(st+1 | st, at).

The transition probability p(st+1 | st, at) states that the
probability of a state transition given an action is indepen-
dent of the goal, and we denote it with St+1 ⊥⊥ Ge | St, At.
For every τ , ge, and θ, we also assume that p(τ | ge,θ) is
non-zero. The expected return of a policy parameterized by
θ is given as

η(θ) = E

[
T∑

t=1

r(St, G
e) | θ

]

=
∑
ge

p(ge)
∑
τ

p(τ | ge,θ)

T∑
t=1

r(st, g
e).

(2)

Off-policy RL methods use experience replay (Lin, 1992;
Mnih et al., 2015) to leverage bias over variance and poten-
tially improve sample-efficiency. In the off-policy case, the
objective, Equation (2), is given as

ηR(θ) =
∑
τ , ge

pR(τ , ge | θ)

T∑
t=1

r(st, g
e), (3)

whereR denotes the replay buffer. Normally, the trajecto-
ries τ are randomly sampled from the buffer. However, we
observe that the trajectories in the replay buffer are often
imbalanced with respect to the achieved goals τ g . Thus, we
propose Maximum Entropy-Regularized Multi-Goal RL to
improve performance.

3.2. Maximum Entropy-Regularized Multi-Goal RL

In multi-goal RL, we want to encourage the agent to tra-
verse diverse goal-state trajectories, and at the same time,
maximize the expected return. This is like maximizing the
empowerment (Mohamed & Rezende, 2015) of an agent at-
tempting to achieve multiple goals. We propose the reward-
weighted entropy objective for multi-goal RL, which is
given as

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑
t=1

r(St, G
e) | θ

]
. (4)

For simplicity, we use p(τ g) to represent
∑

ge pR(τ g, ge |
θ), which is the occurrence probability of the goal-state
trajectory τ g . The expectation is calculated based on p(τ g)
as well, so the proposed objective is the weighted entropy
(Guiaşu, 1971; Kelbert et al., 2017) of τ g , which we denote
asHw

p (T g), where the weight w is the accumulated reward∑T
t=1 r(st, g

e) in our case.
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The objective function, Equation (4), has two interpretations.
The first interpretation is to maximize the weighted expected
return, where the rare trajectories have larger weights. Note
that when all trajectories occur uniformly, this weighting
mechanism has no effect. The second interpretation is to
maximize a reward-weighted entropy, where the more re-
warded trajectories have higher weights. This objective
encourages the agent to learn how to achieve diverse goal-
states, as well as to maximize the expected return.

In Equation (4), the weight, log (1/p(τ g)), is unbounded,
which makes the training of the universal function approx-
imator unstable. Therefore, we propose a safe surrogate
objective, ηL, which is essentially a lower bound of the
original objective.

3.3. Surrogate Objective

To construct the safe surrogate objective, we sample the
trajectories from the replay buffer with a proposal distribu-
tion, q(τ g) = 1

Z p(τ
g) (1− p(τ g)). p(τ g) represents the

distribution of the goal trajectories in the replay buffer. The
surrogate objective is given in Theorem 1, which is proved
to be a lower bound of the original objective, Equation (4).

Theorem 1. The surrogate ηL(θ) is a lower bound of the
objective function ηH(θ), i.e., ηL(θ) < ηH(θ), where

ηH(θ) = Hw
p (T g)

= Ep

[
log

1

p(τ g)

T∑
t=1

r(St, G
e) | θ

]
(5)

ηL(θ) = Z · Eq

[
T∑

t=1

r(St, G
e) | θ

]
(6)

q(τ g) =
1

Z
p(τ g) (1− p(τ g)) (7)

Z is the normalization factor for q(τ g). Hw
p (T g) is the

weighted entropy (Guiaşu, 1971; Kelbert et al., 2017), where
the weight is the accumulated reward

∑T
t=1 r(St, G

e), in
our case.

Proof. See Appendix.

3.4. Prioritized Sampling

To optimize the surrogate objective, Equation (6), we cast
the optimization process into a prioritized sampling frame-
work. At each iteration, we first construct the proposal
distribution q(τ g), which has a higher entropy than p(τ g).
This ensures that the agent learns from a more diverse goal-
state distribution. In Theorem 2, we prove that the entropy

with respect to q(τ g) is higher than the entropy with respect
to p(τ g).

Theorem 2. Let the probability density function of goals in
the replay buffer be

p(τ g),where p(τ g
i ) ∈ (0, 1) and

N∑
i=1

p(τ g
i ) = 1. (8)

Let the proposal probability density function be defined as

q(τ g
i ) =

1

Z
p(τ g

i ) (1− p(τ g
i )) , where

N∑
i=1

q(τ g
i ) = 1.

(9)
Then, the proposal goal distribution has an equal or higher
entropy

Hq(T g)−Hp(T g) ≥ 0. (10)

Proof. See Appendix.

3.5. Estimation of Distribution

To optimize the surrogate objective with prioritized sam-
pling, we need to know the probability distribution of a
goal-state trajectory p(τ g). We use a Latent Variable Model
(LVM) (Murphy, 2012) to model the underlying distribu-
tion of p(τ g), since LVM is suitable for modeling complex
distributions.

Specifically, we use p(τ g | zk) to denote the latent-variable-
conditioned goal-state trajectory distribution, which we as-
sume to be Gaussians. zk is the k-th latent variable, where
k ∈ {1, ...,K} and K is the number of the latent variables.
The resulting model is a Mixture of Gaussians(MoG), math-
ematically,

p(τ g | φ) =
1

Z

K∑
i=k

ckN (τ g|µk,Σk), (11)

where each Gaussian,N (τ g|µk,Σk), has its own mean µk

and covariance Σk, ck represents the mixing coefficients,
and Z is the partition function. The model parameter φ in-
cludes all mean µi, covariance Σi, and mixing coefficients
ck.

In prioritized sampling, we use the complementary pre-
dictive density of a goal-state trajectory τ g as the priority,
which is given as

p̄(τ g | φ) ∝ 1− p(τ g | φ). (12)

The complementary density describes the likelihood that a
goal-state trajectory τ g occurs in the replay buffer. A high
complementary density corresponds to a rare occurrence
of the goal trajectory. We want to over-sample these rare
goal-state trajectories during replay to increase the entropy
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Algorithm 1 Maximum Entropy-based Prioritization (MEP)
while not converged do

Sample goal ge ∼ p(ge) and initial state s0 ∼ p(s0)
for steps per epoch do

for steps per episode do
Sample action at ∼ p(at | st, ge,θ) from behavior policy.
Step environment: st+1 ∼ p(st+1 | st, at).
Update replay bufferR.
Construct prioritized sampling distribution:
q(τ g) ∝ (1− p(τ g | φ))p(τ g) with higherHq(T g).
Sample trajectories τ ∼ q(τ g | φ)
Update policy (θ) to max. Eq [r(S,G)] via DDPG, HER.

Update density model (φ).

Figure 2. MEP Algorithm: We update the density model to construct a higher entropy distribution of achieved goals and update the agent
with the more diversified training distribution.

of the training distribution. Therefore, we use the comple-
mentary density to construct the proposal distribution as a
joint distribution

q(τ g) ∝ p̄(τ g | φ)p(τ g)

∝ (1− p(τ g | φ))p(τ g)

≈ p(τ g)− p(τ g)2.

(13)

3.6. Maximum Entropy-Based Prioritization

With prioritized sampling, the agent learns to maximize the
return of a more diverse goal distribution. When the agent
replays the samples, it first ranks all the trajectories with
respect to their proposal distribution q(τ g), and then uses
the ranking number directly as the probability for sampling.
This means that rare goals have high ranking numbers and,
equivalently, have higher priorities to be replayed. Here, we
use the ranking instead of the density. The reason is that the
rank-based variant is more robust since it is neither affected
by outliers nor by density magnitudes. Furthermore, its
heavy-tail property also guarantees that samples will be di-
verse (Schaul et al., 2015b). Mathematically, the probability
of a trajectory to be replayed after the prioritization is:

q(τ g
i ) =

rank(q(τ g
i ))∑N

n=1 rank(q(τ g
n))

, (14)

where N is the total number of trajectories in the replay
buffer and rank(·) is the ranking function.

We summarize the complete training algorithm in Algo-
rithm 1 and in Figure 2. In short, we propose Maximum
Entropy-Regularized Multi-Goal RL (Section 3.2) to enable
RL agents to learn more efficiently in multi-goal tasks (Sec-
tion 3.1). We integrate a goal entropy term into the normal
expected return objective. To maximize the objective, Equa-
tion (4), we derive a surrogate objective in Theorem 1, i.e.,
a lower bound of the original objective. We use prioritized

sampling based on a higher entropy proposal distribution
at each iteration and utilize off-policy RL methods to maxi-
mize the expected return. This framework is implemented
as Maximum Entropy-based Prioritization (MEP).

4. Experiments
We test the proposed method on a variety of simulated
robotic tasks, see Section 2.1, and compare it to strong
baselines, including DDPG and HER. To the best of our
knowledge, the most similar method to MEP is Prioritized
Experience Replay (PER) (Schaul et al., 2015b). In the
experiments, we first compare the performance improve-
ment of MEP and PER. Afterwards, we compare the time-
complexity of the two methods. We show that MEP im-
proves performance with much less computational time
than PER. Furthermore, the motivations of PER and MEP
are different. The former uses TD-errors, while the latter is
based on an entropy-regularized objective function.

In this section, we investigate the following questions:

1. Does incorporating goal entropy via MEP bring ben-
efits to off-policy RL algorithms, such as DDPG or
DDPG+HER?

2. Does MEP improve sample-efficiency of state-of-the-
art RL approaches in robotic manipulation tasks?

3. How does MEP influence the entropy of the achieved
goal distribution during training?

Our code is available online at https://github.com/
ruizhaogit/mep.git. The implementation uses Ope-
nAI Baselines (Dhariwal et al., 2017) with a backend of
TensorFlow (Abadi et al., 2016).

https://github.com/ruizhaogit/mep.git
https://github.com/ruizhaogit/mep.git
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Figure 3. Mean success rate with standard deviation in all six robot environments

Table 1. Mean success rate (%) and training time (hour) for all six environments

Push Pick & Place Slide

Method success time success time success time

DDPG 99.90% 5.52h 39.34% 5.61h 75.67% 5.47h
DDPG+PER 99.94% 30.66h 67.19% 25.73h 66.33% 25.85h
DDPG+MEP 99.96% 6.76h 76.02% 6.92h 76.77% 6.66h

Egg Block Pen

Method success time success time success time

DDPG+HER 76.19% 7.33h 20.32% 8.47h 27.28% 7.55h
DDPG+HER+PER 75.46% 79.86h 18.95% 80.72h 27.74% 81.17h
DDPG+HER+MEP 81.30% 17.00h 25.00% 19.88h 31.88% 25.36h

4.1. Performance

To test the performance difference among methods includ-
ing DDPG, DDPG+PER, and DDPG+MEP, we run the
experiment in the three robot arm environments. We use
the DDPG as the baseline here because the robot arm en-
vironment is relatively simple. In the more challenging
robot hand environments, we use DDPG+HER as the base-
line method and test the performance among DDPG+HER,
DDPG+HER+PER, and DDPG+HER+MEP. To combine
PER with HER, we calculate the TD-error of each transition
based on the randomly selected achieved goals. Then we
prioritize the transitions with higher TD-errors for replay.

Now, we compare the mean success rates. Each experiment
is carried out with 5 random seeds and the shaded area repre-
sents the standard deviation. The learning curve with respect
to training epochs is shown in Figure 3. For all experiments,

we use 19 CPUs and train the agent for 200 epochs. After
training, we use the best-learned policy for evaluation and
test it in the environment. The testing results are the mean
success rates. A comparison of the performances along with
the training time is shown in Table 1.

From Figure 3, we can see that MEP converges faster in all
six tasks than both the baseline and PER. The agent trained
with MEP also shows a better performance at the end of the
training, as shown in Table 1. In Table 1, we can also see that
the training time of MEP lies in between the baseline and
PER. It is known that PER can become very time-consuming
(Schaul et al., 2015b), especially when the memory size N
is very large. The reason is that PER uses TD-errors for
prioritization. After each update of the model, the agent
needs to update the priorities of the transitions in the replay
buffer, which is O(logN). In our experiments, we use
the efficient implementation based on the “sum-tree” data



Maximum Entropy-Regularized Multi-Goal Reinforcement Learning

#
T

ra
in

in
g

 S
a

m
p

le
s

Mean Success Rate
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

1

2

3

1e5

104500

300200

0.
27
3

104500

300200

0.
27
3

104500

300200

0.
27
3

HandManipulatePenRotate-v0

DDPG+HER+MEP

DDPG+HER

DDPG+HER+PER

0.0 0.2 0.4 0.6 0.8

0

1

2

3

1e5

264100

362900

0.
76
2

264100

362900

0.
76
2

264100

362900

0.
76
2

HandManipulateEggFull-v0

DDPG+HER+MEP

DDPG+HER

DDPG+HER+PER

0.00 0.05 0.10 0.15 0.20 0.25

0

1

2

3

1e5

262200

336300

0.
20
3

262200

336300

0.
20
3

262200

336300

0.
20
3

HandManipulateBlockFull-v0

DDPG+HER+MEP

DDPG+HER

DDPG+HER+PER

0.0 0.2 0.4 0.6 0.8

0

1

2

3

1e5

345800
319200

0.
75
5

345800
319200

0.
75
5

345800
319200

0.
75
5

FetchSlide-v0

DDPG+MEP

DDPG

DDPG+PER

0.2 0.4 0.6 0.8 1.0

0

1

2

3

1e5

112100

273600

0.
99
0

112100

273600

0.
99
0

112100

273600

0.
99
0

FetchPush-v0

DDPG+MEP

DDPG

DDPG+PER

0.0 0.2 0.4 0.6

0

1

2

3

1e5

133000

378100

0.
39
3

133000

378100

0.
39
3

133000

378100

0.
39
3

FetchPickAndPlace-v0

DDPG+MEP

DDPG

DDPG+PER

Figure 4. Number of training samples needed with respect to mean success rate for all six environments (the lower the better)

structure, which can be relatively efficiently updated and
sampled from (Schaul et al., 2015b). To be more specific,
MEP consumes much less computational time than PER.
For example in the robot arm environments, on average,
DDPG+MEP consumes about 1.2 times the training time
of DDPG. In comparison, DDPG+PER consumes about 5
times the training time as DDPG. In this case, MEP is 4
times faster than PER. MEP is faster because it only updates
the trajectory density once per epoch and can easily be
combined with any multi-goal RL methods, such as DDPG
and HER.

Table 1 shows that baseline methods with MEP result in
better performance in all six tasks. The improvement in-
creases by up to 39.34 percentage points compared to the
baseline methods. The average improvement over the six
tasks is 9.15 percentage points. We can see that MEP is a
simple, yet effective method and it improves state-of-the-art
methods.

4.2. Sample-Efficiency

To compare sample-efficiency of the baseline and MEP, we
compare the number of training samples needed for a certain
mean success rate. The comparison is shown in Figure
4. From Figure 4, in the FetchPush-v0 environment,
we can see that for the same 99% mean success rate, the
baseline DDPG needs 273,600 samples for training, while
DDPG+MEP only needs 112,100 samples. In this case,
DDPG+MEP is more than twice (2.44) as sample-efficient
as DDPG. Similarly, in the other five environments, MEP
improves sample-efficiency by factors around one to three.
In conclusion, for all six environments, MEP is able to

improve sample-efficiency by an average factor of two (1.95)
over the baseline’s sample-efficiency.

4.3. Goal Entropy

To verify that the overall MEP procedure works as expected,
we calculated the entropy value of the achieved goal distri-
bution Hp(T g) with respect to the epoch of training. The
experimental results are averaged over 5 different random
seeds. Figure 5 shows the mean entropy values with its
standard deviation in three different environments. From
Figure 5, we can see that the implemented MEP algorithm
indeed increases the entropy of the goal distribution. This
affirms the consistency of the stated theory with the imple-
mented MEP framework.

5. Related Work
Maximum entropy was used in RL by Williams & Peng
(1991) as an additional term in the loss function to encour-
age exploration and avoid local minimums (Mnih et al.,
2016; Wu & Tian, 2016; Nachum et al., 2016; Asadi &
Littman, 2016). A similar idea has also been utilized in the
deep learning community, where entropy loss was used as a
regularization technique to penalize over-confident output
distributions (Pereyra et al., 2017). In RL, the entropy loss
adds more cost to actions that dominate quickly. A higher
entropy loss favors more exploration (Mnih et al., 2016).
Neu et al. (2017) gave a unified view on entropy-regularized
Markov Decision Processes (MDP) and discussed the con-
vergence properties of entropy-regularized RL, including
TRPO (Schulman et al., 2015) and A3C (Mnih et al., 2016).
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Figure 5. Entropy values of the achieved goal distributionHp(T g) during training

More recently, Haarnoja et al. (2017) and Levine (2018)
proposed deep energy-based policies with state conditioned
entropy-based regularization, which is known as Soft-Q
Learning. They showed that maximum entropy policies
emerge as the solution when optimal control is cast as prob-
abilistic inference. Concurrently, Schulman et al. (2017)
showed the connection and the equivalence between Soft-Q
Learning and policy gradients. Maximum entropy policies
are shown to be robust and lead to better initializations for
RL agents (Haarnoja et al., 2018a;b). Based on maximum
entropy polices, Eysenbach et al. (2018) developed an in-
formation theoretic objective, which enables the agent to
automatically discover different sets of skills.

Unlike aforementioned works (Williams & Peng, 1991;
Mnih et al., 2016; Haarnoja et al., 2017), the information
theoretic objective (Eysenbach et al., 2018) uses state, not
actions, to calculate the entropy for distinguishing different
skills. Our work is similar to this previous work (Eysen-
bach et al., 2018) in the sense that we also use the states,
instead of actions, to calculate the entropy term and encour-
age the trained agent to cover a variety of goal-states. Our
method generalizes to multi-goal and multi-task RL (Kael-
bling, 1993; Sutton et al., 1999; Bakker & Schmidhuber,
2004; Sutton et al., 2011; Szepesvari et al., 2014; Schaul
et al., 2015a; Pinto & Gupta, 2017; Plappert et al., 2018).

The entropy term that we used in the multi-goal RL objec-
tive is maximized over goal-states. We use maximum goal
entropy as a regularization for multi-goal RL, which en-
courages the agent to learn uniformly with respect to goals
instead of experienced transitions. This corrects the bias
introduced by the agent’s behavior policies. For example,
the more easily achievable goals are generally dominant in
the replay buffer. The goal entropy-regularized objective
allows the agent to learn to achieve the unknown real goals,
as well as various virtual goals.

We implemented the maximum entropy regularization via
prioritized sampling based on achieved goal-states. We
believe that the most similar framework is prioritized experi-
ence replay (Schaul et al., 2015b). Prioritized experience re-
play was introduced by Schaul et al. (2015b) as an improve-

ment to the experience replay in DQN (Mnih et al., 2015).
It prioritizes the transitions with higher TD-error in the re-
play buffer to speed up training. The prioritized experience
replay is motivated by TD-errors. However, the motivation
of our method comes from information theory–maximum
entropy. Compared to prioritized experience replay, our
method performs superior empirically and consumes much
less computational time.

The intuition behind our method is to assign priority to those
under-represented goals, which are relatively more valuable
to learn from (see Appendix). Essentially, our method sam-
ples goals from an entropy-regularized distribution, rather
than from a true replay buffer distribution, which is biased
towards the behavior policies. Similar to recent work on
goal sampling methods (Forestier et al., 2017; Péré et al.,
2018; Florensa et al., 2018; Zhao & Tresp, 2018; Nair et al.,
2018; Warde-Farley et al., 2018), our aim is to model a goal-
conditioned MDP. In the future, we want to further explore
the role of goal entropy in multi-goal RL.

6. Conclusion
This paper makes three contributions. First, we propose
the idea of Maximum Entropy-Regularized Multi-Goal RL,
which is essentially a reward-weighted entropy objective.
Secondly, we derive a safe surrogate objective, i.e., a lower
bound of the original objective, to achieve stable optimiza-
tion. Thirdly, we implement a novel Maximum Entropy-
based Prioritization framework for optimizing the surrogate
objective. Overall, our approach encourages the agent to
achieve a diverse set of goals while maximizing the expected
return.

We evaluated our approach in multi-goal robotic simulations.
The experimental results showed that our approach improves
performance and sample-efficiency of the agent while keep-
ing computational time under control. More precisely, the
results showed that our method improves performance by 9
percentage points and sample-efficiency by a factor of two
compared to state-of-the-art methods.
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