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Abstract

We compare the performance of averaged regularized estimators.
We show that the improvement in performance which can be
achieved by averaging depends critically on the degree of regulariza-
tion which is used in training the individual estimators. We com-
pare four different averaging approaches: simple averaging, bag-
ging, variance-based weighting and variance-based bagging. In any
of the averaging methods the greatest degree of improvement —if
compared to the individual estimators— is achieved if no or only a
small degree of regularization is used. Here, variance-based weight-
ing and variance-based bagging are superior to simple averaging or
bagging. Our experiments indicate that better performance for
both individual estimators and for averaging is achieved in combi-
nation with regularization. With increasing degrees of regulariza-
tion, the two bagging-based approaches (bagging, variance-based
bagging) outperform the individual estimators, simple averaging,
as well as variance-based weighting. Bagging and variance-based
bagging seem to be the overall best combining methods over a wide
range of degrees of regularization.
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1 Introduction

Several authors have noted the advantages of averaging estimators which were
trained either on identical training data (Perrone, 1993) or on bootstrap samples
of the training data (a procedure termed “bagging predictors” by Breiman, 1994).
Theory and experiments both show that averaging helps most if the errors in the
individual estimators are not positively correlated and if the estimators have only
small bias. On the other hand, it is well known from theory and experiment that
best performance of a single predictor is typically achieved if some form of regular-
ization (weight decay), early stopping or pruning are used. All three methods tend
to decrease variance and increase bias of the estimator. Therefore, we expect that
the optimal degrees of regularization for a single estimator and for averaging would
not necessarily be the same. In this paper we investigate the effect of regularization
on averaging. In addition to simple averaging and bagging we also perform exper-
iments using combining principles where the weighting functions are dependent on
the input. The weighting functions can be derived by estimating the variance of
each estimator for a given input (variance-based weighting, Tresp and Taniguchi,
1995, variance-based bagging, Taniguchi and Tresp, 1995). In the next section we
derive some fundamental equations for averaging biased and unbiased estimators.
In Section 3 we show how the theory can be applied to regression problems and
we introduce the different averaging methods which were used in the experiments
described in Section 4. In Section 5 we discuss the results and in Section 6 we
present conclusions.

2 A Theory of Combining Biased Estimators

2.1 Optimal Weights for Combining Biased Estimators

We would like to estimate the unknown variable t based on the realizations of a set
of random variables {fi}M

i=1. The expected squared error between fi and t

E(fi − t)2 = E(fi − mi + mi − t)2

= E(fi − mi)2 + E(mi − t)2 + 2E((fi − mi)(mi − t))
= vari + b2

i

decomposes into the variance vari = E(fi − mi)2 and the square of the bias bi =
mi − t with mi = E(fi). E(.) stands for the expected value. Note, that E[(fi −
mi)(mi − t)] = (mi − t)E(fi − mi) = 0.

In the following we are interested in estimating t by forming a linear combination
of the fi

t̂ =
M∑
i=1

gifi = g′f

where f = (f1, . . . , fM )′ and the weighting vector g = (g1, . . . , gM )′. The expected



error of the combined system is (Meir, 1995)

E(t̂ − t)2 = E(g′f − E(g′f))2 + E(E(g′f) − t)2

= E(g′(f − E(f)))2 + E(g′m − t)2

= g′Ωg + (g′m − t)2
(1)

where Ω is an M × M covariance matrix with

Ωij = E[(fi − mi)(fj − mj)]

and with m = (m1, . . . , mM )′. The expected error of the combined system is mini-
mized for1

g∗ = (mm′ + Ω)−1tm.

2.2 Constraints

A commonly used constraint which we also use in our experiments is that

M∑
i=1

gi = 1, gi ≥ 0, i = 1, . . . , M.

In the following, g can be written as

g = (u′h)−1h (2)

where u = (1, . . . , 1)′ is an M -dimensional vector of ones, h = (h1, . . . , hM )′, and
hi > 0,∀i = 1, . . . , M .

The constraint can be enforced in minimizing Equation 1 by using the Lagrangian
function

L = g′Ωg + (g′m − t)2 + µ(g′u − 1)

with Lagrange-multiplier µ. The optimum is achieved if we set (Tresp and
Taniguchi, 1995)

h∗ = [Ω + (m − tu)(m − tu)′]−1u.

1Interestingly, even if the estimators are unbiased i. e. mi = t ∀i = 1, . . . , M the
minimum error estimator is biased which confirms that a biased estimator can have a
smaller expected error than an unbiased estimator. As example, consider the case that
M = 1 and m1 = t (no bias). Then

g∗ =
t2

t2 + var1

Note that this term is smaller than one if t 6= 0 and var1 > 0. Then, E(t̂) = E(g∗f1) < m1,
i. e., the minimum expected error estimator is biased!



Now the individual biases (mi− t) appear explicitly in the weights. For the optimal
weights

E(t̂ − t)2 =
1

u′(Ω + (m − tu)(m − tu)′)−1u
.

Note, that by using the constraint in Equation 2 the combined estimator is unbiased
if the individual estimators are unbiased, which is the main reason for employing
the constraint. With unbiased estimators we obtain

h∗ = Ω−1u

and for the optimal weights E(t̂ − t)2 = (u′Ω−1u)−1. If in addition the individual
estimators are uncorrelated we obtain

h∗
i =

1
vari

.

3 Averaging Regularized Estimators

3.1 Training

The previous theory can be applied to the problem of function estimation. Let’s
assume we have a training data set L = {(xk, yk)}K

k=1, xk ∈ <N , yk ∈ <. Our goal
is to estimate the conditional expected value

t(x) = E(y|x).

In our experiments we used neural networks as estimator.2 Let fi(x) denote the
response of the i-th neural network at input x. Each neural network was trained
on the training set L, consisting of K samples, to minimize the cost function

Costi =
K∑

k=1

(yk − fi(xk))2 + λ

J∑
j=1

w2
ij , i = 1, . . . , M (3)

where {wij}J
j=1 are the weights in the i−th neural estimator and J is the number of

weights in each network. The first term is the squared error between the prediction
of the neural network and the target in the training data L and the second term
is a weight-decay penalty weighted by the regularization parameter λ ≥ 0. Weight
decay is commonly used to improve network performance by decreasing variance in
prediction for the cost of introducing bias.

It is obvious that averaging is only useful if the individual estimators differ in their
prediction. Neural networks trained on an identical data set only vary because the

2In the experiments we used standard multi-layer perceptrons with one hidden layer.
For details, see Section 4.



optimization was initialized with different random initial weights and the optimiza-
tion procedure terminates in different local minima. To further decorrelate the indi-
vidual estimators, Breiman suggested to train the estimators using bootstrap repli-
cates LB

1 , . . . , LB
M , a procedure Breiman calls bagging predictors (Breiman, 1994).

The bootstrap replicate LB
i is generated by randomly sampling K-times from the

original training data set L with replacement. For background on bootstrap tech-
niques, see Efron and Tibshirani (1993).

In the experiment we considered combined estimators which can be written as

t̂(x) =
M∑
i=1

gi(x)fi(x) =
1

n(x)

M∑
i=1

hi(x)fi(x), (4)

where n(x) =
∑M

i=1 hi(x) is the normalizing factor and hi(x) ≥ 0,∀i = 1, . . . , M .
Note, that we allow for the possibility that the weighting functions gi(x) depend on
the input x. Also, note that it follows that (compare Section 2.2)

M∑
i=1

gi(x) = 1, gi(x) ≥ 0, i = 1, . . . , M.

In the experiments, we compare the performances of the combined systems for
different choices of gi(x).

Since in Equation 4 averaging is performed for a fixed input x, we can apply the
theory of Section 2 to calculate the optimal weighting functions. Unfortunately, it is
not straightforward to obtain reliable estimates of the covariance matrices and the
biases. We therefore have to rely on experiments to decide if averaging is useful and
in which cases which averaging method should be employed. In the experiments, we
use four different combining methods which are motivated by the theoretical results
in Section 2. The four combining methods are described in the following sections.

3.2 Simple Averaging (AV)

In simple averaging, we set

hi(x) = 1, i = 1, . . . , M for all x.

It is easy to come up with examples where simple averaging is optimal. For example
if all estimators are unbiased and uncorrelated with identical variances or in gen-
eral, when symmetry indicates that no single estimator should be preferred. Past
experiments have shown that simple averaging can improve performance consider-
ably. For experimental results and theoretical background of simple averaging see
Perrone (1993), Jacobs (1995), Krogh and Vedelsby (1995) and Wolpert (1992).



3.3 Bagging (BA)

The only difference to AV is that the individual networks are trained on bootstrap
replicates. Set again

hi(x) = 1, i = 1, . . . , M for all x.

Although the individual estimators are less correlated, we expect that each individ-
ual estimator contains more variance (and possibly more bias) because the training
set contains fewer distinct data if compared to the case where each estimator is
trained on the complete data set.

3.4 Variance-based Weighting (VW)

In variance-based weighting we set

hi(x) =
1

var(fi(x))
, i = 1, . . . , M.

The intuitive idea of the variance-based approach is that when an estimator is
uncertain about its own prediction for a certain input then this estimator is not
competent for this input and obtains a low weight. From our theoretical consider-
ations it is clear that this is optimal if the errors in the individual estimators are
uncorrelated and if the estimators are unbiased. The errors of estimators trained on
identical data or on bootstrap replicates are very likely correlated and weight de-
cay introduces bias such that — from a theoretical point of view — variance-based
weighting is not optimal. Again, experimental results have to show under which
conditions variance-based weighting is useful.

Also, for calculation of the variance it is important to be clear about which random
process we average. If the expected value is taken over all random initial weights
the variances of all estimators are identical and we would obtain simple averaging.
On the other hand if we consider that each estimator has found a different local
minimum we can consider each estimator as a distinct model. Now, we only average
over the noise on the targets. We consider that the targets were generated by the
random process

yk = t(xk) + γ

where t(xk) = E(yk|xk) and γ is independent zero-mean noise with variance σ2.

The variance of an individual predictor for input x can be estimated by a number
of different methods (Tibshirani, 1994). We use

var(fi(x)) ≈ σ2 θi(x)T
H−1

i θi(x)

where θi(x) = ∂fi(x)
∂wi

is the output sensitivity of the neural estimator fi(x) w.r.t the
weights wi at the input x and where wi = (wi1, . . . , wiJ )′ are the weights in the i-th



estimator. Hi is the Hessian, which can be approximated (for the unregularized
estimator) as

Hi ≈
K∑

k=1

∂fi(xk)
∂wi

∂fi(xk)
∂wi

T

. (5)

xk is the k−th sample in the training data set L.

3.5 Variance-based Bagging (VB)

The only difference to VW is that the neural networks are trained on the bootstrap
replicates {LB

i }M
i=1 of the original training set L. The Hessian matrix in Equation 5

is now calculated using the bootstrap samples.

4 Experiments

In this section, we present experimental results using two real-world data sets: the
Breast Cancer data and the DAX data. The first data set can be obtained from
the UCI repository (ftp:ics.uci.edu/pub/machine-learning-databases). The second
data set can be obtained by contacting the authors. We compare the four different
combining methods described in the previous sections using these two databases
with varying degrees of regularization.

In the experiments M = 25 neural networks were combined. All neural networks
had the same fixed architecture, i.e. a multilayer perceptrons with a single hidden
layer of 10 hidden units. The initial weights of the estimators were chosen randomly
out of a uniform distribution between -0.2 and +0.2.

We divided the data bases randomly in two independent sets: the training set L
and the test set T . For AV and VW each neural estimator was trained on the
whole training set. For the bagging-based approaches BA and VB each estimator
was trained on the bootstrap replicates LB

i of the training set L. For training, a
quasi-Newton-method with a fixed number of iterations (400 for the Breast Cancer
data and 300 for the DAX data) was used. To obtain statistically significant results
we repeated each experiment 10 times (R = 10 runs) for both data sets. For the
Breast Cancer data with relatively few data, we chose a different division into test
data and training data for each run.

4.1 Performance Criteria

The averaged summed squared error ASSEC(λ) is the squared test set error of the
individual estimators trained on complete data and with weight decay parameter
λ averaged over all M estimators and averaged over all R runs. ASSEB(λ) is the
equivalent measure for networks trained on bootstrap samples.

ASSEcomb(λ) with comb ∈ {AV,BA, V W, V B} is the squared test set error of the
combining methods with weight decay parameter λ averaged over all R runs.



Furthermore, we define ASTDC(λ) as the averaged standard deviation of the pre-
diction of the neural networks trained with complete data (averaged over all esti-
mators and all runs). ASTDB(λ) is the equivalent measure for networks trained
on bootstrap samples.

The mathematical formulas describing the different measures can be found in Ap-
pendix A.

4.2 Breast Cancer data

The data base has been recorded at the University of Wisconsin Hospitals, Madison.
The data set contains 699 samples with 9 input variables consisting of cellular
characteristics and one binary output with 458 benign and 241 malignant cases.
All input variables were normalized to zero mean and a standard deviation of one.
For every run we divided the data base randomly in K = 599 training samples and
P = 100 test samples.

The Figure 1 (top) shows the averaged performance of the individual estimators as a
function of the regularization parameter λ. The large values of both ASSEC(λ) and
ASSEB(λ) for λ = 0 indicate that neural networks without regularization extremely
overfit the data. For λ ≈ 1.25 the networks trained on complete data obtain best
performance. ASSEB(λ) reaches a minimum at λ = 2. As expected, ASSEB(λ)
is always larger than ASSEC(λ) since the networks trained on bootstrap replicates
have seen fewer distinct data. The difference between ASSEB(λ) and ASSEC(λ)
decreases with increasing λ.

The Figure 1 (bottom) shows ASTDC(λ) and ASTDB(λ). Both ASTDC(λ) and
ASTDB(λ) decrease monotonously with growing λ and ASTDB(λ) is consistently
larger. Even for large λ, ASTDB(λ) is still greater than 0.02 whereas ASTDC(λ)
is close to zero. The figure clearly demonstrates that bagging increases variance in
the prediction.

The test set performances of the different combination methods is plotted in Fig-
ure 2 (top). With no regularization, all averaging methods show dramatically bet-
ter performance if compared to the individual estimators. The variance-based ap-
proaches VW and VB are both better than the other averaging methods if λ is close
to zero. This result seems to indicate that the variance-based methods successfully
recognize the large variance in networks due to local overtraining. With increasing
λ the individual networks as well as all averaging methods improve performance.
With increasing λ, the performances of AV and VW — the approaches in which the
networks were trained on complete data — converge to ASSEC(λ).

In particular for 0.3 < λ < 1 the performance of bagging is impressive and is superior
to AV and VW. Most strikingly however, VB shows very good performance for any
λ and seems to combine the advantages of both VW and BA.

Note that the optimum for the individual estimators is at a larger degree of regular-
ization than the optimum of the bagging approaches BA and VB. For AV and VW,
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Figure 1: Top: ASSEC (continuous) and ASSEB (dash-dotted) as a function of λ
for the Breast Cancer data. For λ = 0, ASSEC = 746 and ASSEB = 133 are out
of scale. Bottom: ASTDC (continuous) and ASTDB (dash-dotted) as a function
of λ for the Breast Cancer data. For λ = 0, ASTDC = 0.49 and ASTDB = 0.55
are out of scale.
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Figure 2: Top: ASSEcomb(λ) of the different averaging approaches for the Breast
Cancer data. Displayed is AV (dashed), BA (dotted), VW (dash-dotted), and VB
(lower continuous line). The highest continuous line shows the average performance
of the individual bagging networks and the second highest line shows the average
performance of the networks trained on the complete data. Bottom: The figure
shows the number of single estimators trained on complete data which are worse
than the averaging methods for the Breast Cancer data (in percent).



best performance coincides with the best performance of the averaged individual
networks trained on complete data.

Figure 2 (bottom) shows the number of single estimators which were worse than the
averaging methods in percent. The impressive performance of VB is also apparent:
in the large majority of settings for λ, VB is better than all individual networks!
Bagging shows excellent performance up to λ ≈ 1 and AV and VW are best for
small values of λ <≈ 0.5.

4.3 DAX data

The DAX data consist of 2564 samples of the Deutschen Aktien Index(DAX)3 from
March 5, 1984 to December 30, 1993. The goal is to predict the value of the DAX
of the following day based on past measurements of the DAX. As input variables
12 indicators were calculated (see Appendix B). All inputs and the output were
normalized with zero mean and variance of one. The training data set consisted of
K = 2150 samples (from March 5, 1984 to May 29, 1992) and the test set consisted
of P = 414 test samples (from June 1, 1992 to December 30, 1993).

The Figure 3 (top) shows ASSEC(λ) and ASSEB(λ) as a function of the regu-
larization parameter λ. The graph shows qualitatively the same characteristics as
in the previous experiment. Again, for small λ we see overfitting. ASSEC(λ) is
optimal at λ ≈ 30 and ASSEB(λ) is optimal at λ ≈ 50. Again, ASSEB(λ) is
always larger than ASSEC(λ) since the networks trained on bootstrap replicates
have seen fewer distinct data.

Figure 3 (bottom) shows the average standard deviation of the prediction
(ASTDC(λ), ASTDB(λ)). Again, for increasing λ, ASTDC(λ) quickly approaches
zero whereas ASTDB(λ) still assumes relative large values.

The test set performances of the different combination methods is plotted in Fig-
ure 4 (top and center). With no regularization all averaging methods show much
better performance if compared to the individual estimators. The variance-based
approaches VW and VB are slightly better to the other averaging methods at at
λ = 0. Interestingly, with increasing λ the performances of the averaging methods
first decrease but have a global optimum for intermediate values of λ. This can be
explained by the drastic improvement of the individual estimators with optimal λ.
All averaging methods show excellent performance for 30 < λ < 40. Best perfor-
mance is achieved for VB at λ = 40. Note that for λ > 50, AV and VW are no
better than the average of the individual networks whereas BA and VB are still
considerably better than the mean of the networks trained on bootstrap samples.

Figure 4 (bottom) shows the number of single estimators which were worse than
the averaging methods in percent. Apparent is the impressive performance of all
averaging methods if no regularization is used. For λ < 50 all averaging methods

3The DAX represents the average value of the stock of a set of representative companies,
analogously to the Dow Jones index in the US.
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Figure 3: Top: ASSEC (continuous) and ASSEB (dash-dotted) as a function of λ
for the DAX data. Bottom: ASTDC (continuous) and ASTDB (dash-dotted) as a
function of λ for the DAX data.
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Figure 4: Top and center: ASSE of the different averaging approaches for the
DAX data for different scales of λ. Displayed is AV (dashed), BA (dotted), VW
(dash-dotted), and VB (lower continuous line). The highest continuous line shows
the average performance of the individual bagging networks and the second highest
line shows the average performance of the networks trained on the complete data.
Bottom: The figure shows the number of single estimators trained on complete data
which are worse than the averaging methods for the DAX data (in percent).



are better than 65% of all individual estimators. For λ > 50 BA and VB are con-
siderably better that the individual estimators whereas the improvement achieved
with AV and VW decreases quickly.

5 Discussion

The experiments confirmed the theory but also showed some unexpected results.
As predicted, the variance in the networks decreases rapidly with increasing weight-
decay parameter λ if networks are trained on complete data as shown in Figures 1
and 3. On the other hand, if networks are trained on bootstrap replicates, we obtain
large variance in the networks even at relatively large values of λ. The performance
of the individual networks is worse for networks trained on bootstrap replicates
since each estimator has seen a smaller number of distinct data. The relative im-
provement in performance by averaging increases with increasing variance in the
estimates and bias hurts. Therefore for all averaging methods the relative improve-
ment is maximum if no weight decay is used. On the other hand the performances
of the networks improve with weight decay. So —as confirmed by experiment—
regularization also improves the averaged systems. Simple averaging (AV) shows
good performance at small values of λ. Even better at small λ is variance-based
weighting (VW). The reason is that local overtraining is reflected in large variance.
The corresponding estimator obtains consequently a small weight. With increasing
λ, the performance of both AV and VW become comparable and both approach
the performance of an average individual estimator trained on complete data for
large λ. This confirms that all estimators are highly correlated for large λ as al-
ready noted in Figures 1 and 3. Bagging (BA) displays better performance than
AV and VW up to intermediate values of λ except when λ is extremely small or
zero. This can be explained by the fact that training on bootstrap samples results
in considerable variance in the networks even for large λ. Variance-based bagging
(VB) seems to combine the advantages of both variance-based weighting and bag-
ging. If networks are overtrained they locally have large variance and obtain a small
weight locally. Training on bootstrap replicates introduces additional variance in
the networks which is particularly useful for large λ. In our first experiment (Breast
Cancer data), variance-based bagging was the overall best combining method over
a wide range of degrees of regularization. In the second experiment (DAX data)
BA and VB show similar performance for intermediate and large values of λ but
VB shows superior performance for small λ.

6 Conclusions

Based on our experiments we can conclude that — in comparison with the indi-
vidual estimators — averaging improves performance at all levels of regularization.
In particular we also obtain improvements with respect to optimally regularized
estimators, although the degree of improvement is application specific. Averaging
is less sensitive with respect to the regularization parameter λ if compared to the



individual estimators. Especially if the individual estimators overfit, averaging still
gives excellent performance. Overall, bagging and variance-based bagging which
both use networks trained with bootstrap replicates work well for a wide range of
values of λ. At extremely small values of λ, variance-based weighting and variance-
based bagging are clearly superior to the other averaging approaches.
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Appendix

A: Performance Criteria

Let fC,λ
i,j be the i-th estimator on the test set in the j-th run trained on complete

training data with regularization parameter λ. The summed squared error for fC,λ
i,j

is defined as

SSEC
i,j(λ) =

P∑
p=1

(yp
j − fC,λ

i,j (xp
j ))

2

where Tj = {(xp
j , y

p
j )}P

p=1 are the test data in the j-th run. As performance criterion
for the individual estimators we use the averaged summed squared error where we
average over all M estimators and all R runs

ASSEC(λ) =
1
R

R∑
j=1

1
M

M∑
i=1

SSEC
i,j(λ).

The performance measures for networks trained on bootstrap replicates SSEB
i,j(λ)

and ASSEB(λ) are defined analogously.

To measure the performance of combining methods we define similarly

SSEcomb
j (λ) =

P∑
p=1

(yp
j − t̂λj (xp

j ))
2

where t̂λj is the response of the combined system from the Equation 4 in the j-th
run for regularization parameter λ. The averaged SSE for combining systems is
defined as

ASSEcomb(λ) =
1
R

R∑
j=1

SSEcomb
j (λ)

where comb ∈ {AV,BA, V W, V B}.



The averaged standard deviation of the prediction of the neural networks trained
with complete data is defined as

ASTDC(λ) =
1
R

R∑
j=1

1
P

P∑
p=1

√√√√ 1
M

M∑
i=1

(fC,λ
i,j (xp

j ) − f̄C,λ
j (xp

j ))2

with

f̄C,λ
j (xp

j ) =
1
M

M∑
i=1

fC,λ
i,j (xp

j ).

ASTD is a measure of the degree of variance between the individual networks. The
corresponding measure for networks trained on bootstrap replicates ASTDB(λ) is
defined analogously.

B: The DAX inputs

Table 1: Input variables for predicting the DAX at day t + 1.
Input Variable Description

1 y(t)/y(t − 1)
2 log(y(t)) − 1/5

∑4
i=0 log(y(t − i))

3 log(y(t)) − 1/10
∑9

i=0 log(y(t − i))
4 (log(y(t)) − log(y(t − 5))) − (log(y(t)) − log(y(t − 6)))
5 (log(y(t)) − log(y(t − 10))) − (log(y(t)) − log(y(t − 11)))
6 rsi(log(y(t)), 5)
7 rsi(log(y(t)), 10)
8 log(y(t))−mini=1,...,4(ln(y(t−i)))

maxi=1,...,4(log(y(t−i)))−mini=1,...,4(ln(y(t−i)))

9 log(y(t))−mini=1,...,9(ln(y(t−i)))
maxi=1,...,9(log(y(t−i)))−mini=1,...,9(ln(y(t−i)))

10 1/3
∑2

i=0
log(y(t−i))−mini=1,...,4(ln(y(t−i)))

maxi=1,...,4(log(y(t−i)))−mini=1,...,4(ln(y(t−i)))

11 1/3
∑2

i=0
log(y(t−i))−mini=1,...,9(ln(y(t−i)))

maxi=1,...,9(log(y(t−i)))−mini=1,...,9(ln(y(t−i)))

12 vol(t)/vol(t − 1)

Table 1 describes the input variables used in the DAX data. y(t) is the DAX at
day t. vol(t) is the total volume of the transactions at the German stock market at
day t. Furthermore,

rsi(y(t), n) =
∑n−1

i=0 b(y(t − i) − y(t − i − 1))∑n−1
i=0 |y(t − i) − y(t − i − 1)| with b(y(t)) =

{
0 if y(t) ≤ 0
y(t) if y(t) > 0

For a motivation of the preprocessing and further details see Dichtl (1995).
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