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Abstract. There is great interest in understanding the intrinsic knowledge neural networks have
acquired during training. Most work in this direction is focussed on the multi-layer perceptron
architecture. The topic of this paper is networks of Gaussian basis functions which are used
extensively as learning systems in neural computation. We show that networks of Gaussian basis
functions can be generated from simple probabilistic rules. Also, if appropriate learning rules
are used, probabilistic rules can be extracted from trained networks. We present methods for the
reduction of network complexity with the goal of obtaining concise and meaningful rules. We show
how prior knowledge can be refined or supplemented using data by employing either a Bayesian
approach, by a weighted combination of knowledge bases, or by generating artificial training data
representing the prior knowledge. We validate our approach using a standard statistical data set.
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1. Introduction

Many systems which were developed in the field of machine learning are rule-based,
i.e., they provide an explicit representation of the acquired knowledge in the form
of a set of rules. A rule-based representation has a number of advantages: rules
are compact, modular, and explicit, plus they can be analyzed by domain experts
and can be checked for plausibility. If it is felt that the represented knowledge is
incomplete, informative additional experiments can be designed by carefully analyz-
ing the available rule base. Over the last decade, neural networks (more precisely,
artificial neural networks) are being used increasingly as learning systems (Rumel-
hart & McClelland, 1986; Hertz, Krogh, & Palmer, 1991). In neural networks, the
acquired knowledge is only implicitly represented in the network architecture and
weight values. It is therefore in general difficult to obtain explicit understanding
of what the neural network has learned which in many cases might be highly de-
sirably. Consider the rather spectacular case of Tesauro’s TD-Gammon network
(1992). TD-Gammon is a neural network that learned to play championship-level
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Backgammon by playing against itself without a supervisor. TD-Gammon’s weights
contain a tremendous amount of useful information. Currently there are basically
only two ways to understand the functionality of the network: by plotting patterns
of weight values or by gathering statistics of the network output through extensive
play. The former method provides no more than a general impression; the latter
forces the human to redo the entire learning process. It would be extremely helpful
if it was possible to automatically construct readable higher level descriptions of
the stored network knowledge.

So far we only discussed the extraction of learned knowledge from a neural net-
work. For many reasons the“reverse” process, by which we mean the incorpora-
tion of prior high-level rule-based knowledge into the structuring and training of
a neural network, is of great importance as well. First, a network that has been
pre-initialized with domain knowledge — even if it is approximate knowledge—
may learn faster (i.e., converge in fewer learning steps to an acceptable solution)
than a network learning from scratch (Shavlik & Towell, 1989; Gallant, 1988). A
second reason is that in many domains it is difficult to get a significant number
of training examples. In this case we clearly want to utilize any prior knowledge
we may possess about the domain. A third reason is that the data distribution
over input space is often highly nonuniform. Thus even if we have access to a large
training corpus, it may contain very few, if any, examples in some regions of input
space. However the system’s response to those areas may be critical. As an example
consider the diagnosis of rare fatal diseases. In such situations, even though the
training set may contain few examples of the disease, a domain theory may exist
and it is desirable to exploit this knowledge.

The topic of this paper is the two-way relationship — i.e., the extraction of
learned knowledge from a trained neural network and the inclusion of prior rule-
based knowledge into the structuring and training of neural networks — between
network-based representations and higher level, rule-based representations. Pre-
vious work in this area has concentrated on the popular multi-layer perceptron
architecture either for incorporating rule-based knowledge into network training
(Fu, 1989; Towell & Shavlik, 1994) or for extracting knowledge out of a trained
network (Fu, 1991; Towell & Shavlik, 1993; Thrun, 1995). In this paper we con-
sider normalized Gaussian basis function (NGBF) networks which represent another
commonly used learning system in the neural network community. In Tresp, Hol-
latz and Ahmad (1993) it was shown that there is a certain equivalence between
NGBF-networks and probabilistic rules if appropriate learning rules for the NGBF-
networks are used. This approach will be explored in detail in this paper. We will
demonstrate that the probabilistic setting has unique advantages. In particular,
it is straightforward to calculate inverse models, conditional probability densities,
and optimal responses with missing or noisy features. In a non-probabilistic set-
ting these calculations are either impossible or involve either complex numerical
integrations or heuristic solutions.

The models described in this paper are based on the mixtures of Gaussians which
are commonly used as probability density estimators (Duda & Hart, 1973). Cheese-
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man et al. (1988) use mixtures of Gaussians in their AutoClass system to discover
unlabeled classes or clusters in data sets which can be considered as a form of data
analysis. The novel aspect of this paper is to develop and exploit the three-way
relationship between probabilistic rule-bases, networks of Gaussian basis functions
which are commonly used in the neural network community, and statistical Gaus-
sian mixtures models.

Section 2 introduces networks of normalized Gaussian basis functions (NGBFs).
Section 3 shows how networks of NGBFs can be constructed using a set of proba-
bilistic rules and demonstrates how they can be used for inference in classification
and regression. Section 4 shows how a rule base can be generated from data by
training an NGBF-network using appropriate learning rules and by extracting rules
after training. Section 5 shows how prior rule-based knowledge can be combined
with learning from training data. In Section 6 we present experimental results
using a widely used statistical data set and describe methods for optimizing the
network structure. Section 7 presents modifications and discusses related work and
in Section 8 we present conclusions.

2. Gaussian Basis Function Networks

In this section we introduce Gaussian basis function (GBF) networks and networks
of normalized Gaussian basis functions (NGBFs), then discuss the most common
algorithms to train NGBF-networks.

Gaussian basis function (GBF) networks are commonly used as predictors and
classifiers in the neural network community (Moody & Darken, 1989; Poggio &
Girosi, 1990). The output of a GBF-network is the weighted superposition of the
responses of N Gaussian basis functions

y = GBF (x) =
N∑

i=1

wi exp[−1
2

M∑
j=1

(xj − cij)2

σ2
ij

]

with x = (x1, x2, . . . , xM )′ ∈ <M and y ∈ <; the prime ()′ indicates the transpose of
a vector or matrix. The GBFs are parameterized by the locations of their centers
ci = (ci1, . . . , ciM )′, and the vectors of scaling parameters σi = (σi1, . . . , σiM )′

where σij is a measure of the width of the ith Gaussian in the jth dimension.
Additional parameters are the output weights w = (w1, . . . , wN )′. Moody and
Darken (1989) also introduced networks of normalized Gaussian basis functions
(NGBFs) whose responses are mathematically described as1

y = NGBF (x) =
∑N

i=1 wibi(x)∑N
k=1 bk(x)

=
N∑

i=1

wini(x) (1)

with

bi(x) = κi exp[−1
2

M∑
j=1

(xj − cij)2

σ2
ij

] and ni(x) =
bi(x)∑N

k=1 bk(x)
.
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In this paper, we are only concerned with NGBF-networks.
Typically, network parameters are determined using a training data set {(xk, yk)}K

k=1.
A number of training methods for NGBF-networks were suggested in the literature.
In the method proposed by Moody and Darken, the centers ci are cluster centers
obtained using N -means clustering of the input data distribution. The scaling pa-
rameters σij are determined using a heuristic, typically they are set to a constant
multiple of the average distance between cluster centers. In the soft-clustering algo-
rithm introduced by Nowlan (1991), a Gaussian mixture2 model of the input data is
formed and the centers and standard deviations of the Gaussian mixtures are used
for the centers and scale parameters in the NGBF-networks. If a Gaussian unit is
placed on each each data point, we obtain architectures proposed by Specht (1990,
1991) and Smyth (1994). The parameters κi in the NBGF-network determine the
overall weight of a Gaussian in the network response (Tresp, Hollatz, & Ahmad,
1993) and are often set to one.

With centers and scaling parameters fixed, the output weights w which mini-
mize the mean squared error of the NGBF-network on the training data can be
determined using

wls = (n′n)−1 n′ ty (2)

where ty = (y1, . . . , yK)′ is the vector of targets and n is an K × N matrix with
elements (n)ki = ni(xk) (Sen & Srivastava, 1990).

In the learning algorithms just described, centers and widths of the GBFs are
determined solely based on the input data and only the output weights are deter-
mined using information about the targets yk. Alternatively, all parameters can be
adjusted to minimize the training error defined as

K∑
k=1

(NGBF (xk) − yk)2 (3)

using an optimization routine such as gradient descent (Röscheisen, Hofmann, &
Tresp, 1992; Wettscherek & Dietterich, 1992).

In particular in classification problems, it often makes sense to also work with
multi-dimensional outputs y = (y1, . . . , yl, . . . , yC)′, with

yl =
N∑

i=1

wil ni(x) (4)

and where C denotes the number of classes. In classification, xk corresponds to the
feature vector of the k−th training pattern and

yk
l =

{
1 if j = l
0 otherwise

indicates that the j-th class is the correct class for the k-th training pattern. During
recall, a pattern is assigned to that class whose corresponding network output has
maximum activity.
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Figure 1. The figure compares the response of a network of Gaussian basis functions (GBFs, left)
with the response of a network of normalized Gaussian basis functions (NGBFs, right). On the
left, we see two Gaussian basis functions (dotted). The network response (continuous line) is a
superposition of the two Gaussians weighted by the output weights 1.0 (for the left GBF) and 2.0
(for the right Gaussian). The right graph displays the responses of two normalized Gaussian basis
functions with identical output weights (1.0, 2.0). Shown are also the two basis functions (dotted)
and the normalized Gaussian basis functions (dashed). We used κ1 = κ2 = 1. It is apparent that
the network response of the NGBF-network corresponds to the intuitive notion that close to the
center of the left Gaussian the output should be close to the output weight of the left Gaussian
(i.e., 1.0) and close to the center of the right Gaussian, the output should be close to the output
weight of the right Gaussian (i.e., 2.0).
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Figure 2. Shown are the distributions of the features (body temperature, blood pressure) for a
healthy patient (1, o), for a patient with disease A (2, +), for a patient with disease B (3, x) and
for a patient with both diseases (4, *). The ovals indicate the extend of Gaussians modeling the
respective data distributions and the symbols o, +, x, and * indicate samples.

The responses of the Gaussian basis functions tend to have a local character
in the sense that each basis function contributes to the response of the network
in only a local region of the input space close to its center. The extend of this
region of influence is determined by the scaling parameters. This indicates that
we might be able to formulate approximate rules of the form: If x ≈ ci THEN
y ≈ wi. Figure 1 shows that this rule is much more consistent with the response
of the NGBF-network than with the response of the GBF-network. The reason is
that in the calculation of the response of the GBF-network, the contributions of
the individual basis functions are additive. The total response of the network of
NGBF-functions on the other hand is a weighted average of the responses of the
individual units, where the weighting function of each individual basis function is
proportional to the activity of the corresponding Gaussian. This averaging results in
a compromise between the output weights of the active Gaussians. In the following
sections we pursue this observation further. We will show that by formulating
probabilistic rules we can construct NGBF-networks and that probabilistic rules
can be extracted from NGBF-networks trained on data. In addition, we will show
how rule-based knowledge can be used in several ways in combination with trained
NGBF-networks.
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3. Constructing NGBF-networks from Rules

In this section we show how simple probabilistic rules can be used to incorporate
prior knowledge of a domain expert. Then we show that if we perform inference us-
ing those probabilistic rules we obtain an NGBF-architecture. The premises of the
rules make statements about the state of a discrete variable. In classification appli-
cations that variable typically has a real world meaning (i.e., the class). We show
that this need not be the case and one novel aspect of this paper is to demonstrate
how rules with premises which have no obvious real world meaning can be used
to generate rule bases which are particularly useful for making inferences about
continuous quantities.

3.1. Classifiers

Classification can be considered as the problem of estimating the state of a discrete
C-state random variable s (i.e., the class) given a feature vector x = (x1, . . . , xM )′

where C is the number of classes and, in general, xi ∈ <. Given the feature vector
we can calculate the posterior probability of a class using Bayes’ rule as

P (s = i|x) =
P (x|s = i)P (s = i)∑C

j=1 P (x|s = j)P (s = j)
. (5)

Here, P (s = i) is the prior probability of class i and P (x|s = i) is the probabil-
ity density of feature vector x given class i. A simple example is shown in Fig-
ure 2. The different classes represent a healthy patient, a patient with disease A,
a patient with disease B and a patient with both diseases. The two features are
x1 = body temperature and x2 = blood pressure. We assume that the conditional
densities of the features given the classes can be represented by normal densities

P (x|s = i) = G(x; ci, σi) =
1

(2π)M/2
∏M

j=1 σij

exp[−1
2

M∑
j=1

(xj − cij)2

σ2
ij

]. (6)

Here, only axis-parallel Gaussians (i.e., with diagonal covariance matrices) are used
which means that the individual features are independent if the true class is known.
Note that G(x; ci, σi) is our notation for a normal density centered at ci and with
a vector of scaling parameters σi. If the patient is healthy, which is true with
probability P (s = 1), body temperature and blood pressure are in a normal range.
Similarly, the second Gaussian models disease A which results in high blood pressure
and normal body temperature, the third Gaussian models disease B which results in
high body temperature and normal blood pressure and the fourth Gaussian models
patients with both diseases which results in high blood pressure and high body
temperature. In terms of probabilistic networks (Figure 3A) (Pearl, 1988), the
variable s which has C different states can be considered a parent node and the xi

are children which are independent if the state of s is known.
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For easier interpretation, the human expert might find it convenient to put his or
her knowledge in form of probabilistic rules (Table 1).

Table 1. A classification rule. For each class i define:

IF: class i is true (which is the case with prior probability P (s = i))
THEN: (the features are independently Gaussian distributed and)

the expected value of x1 is ci1 and the standard deviation of x1 is σi1

AND the expected value of x2 is ci2 and the standard deviation of x2 is σi2

. . .
AND the expected value of xM is ciM and the standard deviation of xM is σiM .

Since the discrete variable s appears in the premise of the rules we will denote s in
the following as the premise variable. The (typically real-valued) variables {xj}M

j=1

will be denoted interchangeably as conclusion variables or feature variables. If
the expert defines a set of rules in this form we can use Equation 5 to perform
inference, i.e., to classify a novel pattern. But note that if we use centers ci and
scaling parameters σi from the rule base, and set

κi = P (s = i) × 1

(2π)M/2
∏M

j=1 σij

and wil = 1 if the i-th Gaussian is assigned to class l and wij = 0 otherwise we
obtain an NGBF-classifier (Equation 4).

In the way just described we can build or prestructure an NGBF-classifier using
a set of probabilistic rules.

3.2. More Complex Classifiers

If there are correlations between the features for each class or, more general, if
P (x|s = i) cannot be described by a single Gaussian, the classifier which was de-
scribed in the last section is too simplistic. There are two obvious ways more com-
plex classifiers can be built. As described by Ghahramani and Jordan (1993), linear
correlations between features can be modeled by Gaussians with full covariance ma-
trices. Alternatively, we can allow for more than one Gaussian to approximate the
class conditional density. Let N be the total number of Gaussians and let I(i)
denote the set of indices of the Gaussians which are assigned to class i. Then

P (x|s = i) =
∑

j∈I(i)

P (s∗ = j|s = i) G(x; cj , σj) (7)

where the state of s ∈ {1, . . . , C} indicates the class and the state of s∗ ∈ {1, . . . , N}
indicates the Gaussian unit with the constraint that

∑
j∈I(i) P (s∗ = j|s = i) = 1

and with P (s∗ = j|s = i) = 0 if j 6∈ I(i).
If we substitute Equation 7 into Equation 5 we obtain again an NGBF-classifier
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Figure 3. A: The dependency structure of a classification problem. The directed arcs indicate
that the features x1 and x2 are independent if the state of s is known. B: As in A, with the
internal states of s shown, indicating that there are three classes. C: Dependency structure of
a hierarchical system. D: : As in C, with the internal states of s and s∗ shown. The arrows
between the states of s and s∗ indicate that pairs of Gaussians model the class-specific feature
distributions.
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P (s = i|x) =
P (s = i)

∑
j∈I(i) P (s∗ = j|s = i) G(x; cj , σj)∑C

k=1 P (s = k)
∑

j∈I(k) P (s∗ = j|s = k) G(x; cj , σj)
. (8)

In Figure 3 on the left, we indicate graphically the relationship between s (with
3 states) and the features x1 and x2 of the simple classifier described in the last
section. On the right side we show the structure of a classifier where each class-
conditional density is modeled by more than one Gaussian. In some cases the states
of s∗ might also have a real world meaning.

Table 2. A hierarchical rule-base. For each class i and each unit j ∈ I(i), define:

IF: class i is true (which is the case with prior probability P (s = i))
THEN: s∗ = j is true with probability P (s∗ = j|s = i).

IF: s∗ = j is true
THEN the expected value of x1 is cj1 and the standard deviation of x1 is σj1

AND the expected value of x2 is cj2 and the standard deviation of x2 is σj2

. . .
AND the expected value of xM is cjM and the standard deviation of xM is σjM .

The corresponding rule-based formulation is shown in Table 2. Here, the expert
also has to specify P (s∗ = j|s = i) for all classes i and Gaussians j. Note, that the
hierarchy can be extended to an arbitrary number of layers.3

3.3. Modeling the Relationship between Continuous Variables

In many applications we are interested in making inference about a continuous
quantity. It is not obvious how a discrete set of rules can be used to describe the
structure in continuous variables. The basic idea presented here is to interpret
the premise variable s as a hidden variable with no obvious real-world meaning.
Consider Figure 4. Here we plot a (made up) distribution of the height and weight
of a population. We cannot really claim that weight is the cause for height or vice
versa. Also there are no obvious underlying causes (genetic factors, race, gender:
we do not really know) which explain the data. Rather, to explain the data we
“invent” hidden causes which are represented by the state of the discrete hidden
variable s. In this example, there are only two hidden states s = 1 and s = 2 and
a domain expert might specify rules as in Table 3.

Table 3. A modeling rule. For each hidden state i:

IF: s = i (which is the case with prior probability P (s = i))
THEN: the expected value of x1 is ci1 and the standard deviation of x1 is σi1

AND the expected value of x2 is ci2 and the standard deviation of x2 is σi2

The use of hidden random variables (in our sense variables without a real-world
meaning) has a long tradition both in neural networks and probability theory (con-
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Figure 4. The graph shows two Gaussians (ovals) which model the joint distribution between two
features (height, weight). Samples are indicated by small circles.

sider, for example, hidden Markov models in speech recognition and the hidden
states in Boltzmann machines). Pearl (1988) argues that humans have a strong de-
sire to “invent” hidden causes to explain observations. They are simply convenient
vehicles for describing the observed world. The advantage is, as demonstrated,
that a complex uncertain relationship between variables can be concisely summa-
rized using a small number of simple rules. As in classification (Section 3.2) we
can introduce hierarchies which enables us to describe the relationship between the
variables at difference scales of resolution. In the next section, we will describe how
this model can be used for prediction.

3.4. Inference and Prediction

A rule base might contain a mixture of rules with premises with or without a real-
world meaning. In this section we show how we can use such a rule base to infer
the states of variables based on knowledge about the states of some other set of
variables. We will show that inference rules can be realized by NGBF-networks.
We already presented two inference rules: Equations 5 and 8 showed how we can
infer the state of premise variable s if the feature vector is complete (i.e., all the
states of x are known) for a simple classifier and for a hierarchical classifier. Here,
we show how inference is performed if the feature vector is incomplete (we only
have partial knowledge) or if we want to infer the state of one of the real-valued
components of the feature vector.
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Let us assume that only some of the components of the feature vector x are known.
In classification we are then faced with the problem of estimating the correct class
from incomplete features. Or, as in the example depicted in Figure 4, we might
be interested in predicting x2 (i.e., the weight which is unknown or missing) from
x1 (i.e., the height which can be measured) or vice versa. Let xm ⊂ {x1, . . . , xM}
denote the known feature variables, let xu = {x1, . . . , xM}\xmdenote the unknown
feature variables, and let cm

i and σm
i consist of the components of ci and σi in the

dimensions of xm. The probability of s = i given xm can be easily calculated as

P (s = i|xm) =
P (xm|s = i) P (s = i)∑N

j=1 P (xm|s = j) P (s = j)
(9)

where,

P (xm|s = i) =
∫

G(x; ci, σi) dxu = G(xm; cm
i , σm

i ). (10)

The last equality demonstrates that the marginal distribution of a Gaussian is
again a Gaussian: it is simply the projection of the Gaussian onto the dimensions
of xm. This is the reason why our model handles missing variables so easily (see
also Ahmad & Tresp, 1993).

We can also predict any of the unknown feature variables y ∈ xu from the known
feature variables xm. Let cy

i and σy
i denote center and width of the i-th Gaussian

in y-dimension. The conditional density of y is

P (y|xm) =
∑N

i=1 G(y; cy
i , σy

i ) G(xm; cm
i , σm

i ) P (s = i)∑N
j=1 G(xm; cm

j , σm
j ) P (s = j)

. (11)

For prediction we are typically interested in the expected value4 of y given xm,
which can also be easily be calculated

E(y|xm) =
∑N

i=1 wi G(xm; cm
i , σm

i )P (s = i)∑N
j=1 G(xm; cm

j , σm
j ) P (s = j)

(12)

where wi = cy
i . Note that that last equation can be realized by an NGBF-network

(Equation 1). This means that NGBF-networks for estimating continuous variables
can be constructed from probabilistic rules in a similar way as NGBF-networks for
classification.

We want to emphasize again, that by using a probabilistic model, we can predict
any feature variable y ∈ {x1, . . . , xM} from any set of measured feature variables
xm ⊂ {x1, . . . , xM}. 5

In Section 3.2 we showed how the class can be estimated in hierarchical models
(Equation 8). Here, we derive Equations for estimating an unknown feature variable
in a hierarchical model. For the expected value of an unknown variable y, we obtain
using Bayes’ rule
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E(y|xm) =

∑C
i=1 P (s = i)

∑
j∈I(i) wj P (s∗ = j|s = i) G(xm; cm

j , σm
j )∑C

i=1 P (s = i)
∑

j∈I(i) P (s∗ = j|s = i) G(xm; cm
j , σm

j )
(13)

with wj = cu
j . This can also be written as

E(y|xm) =
C∑

i=1

[gi(xm)
∑

j∈I(i)

wj g∗j (xm)] (14)

where

gi(xm) = P (s = i|xm) =
P (s = i)

∑
j∈I(i) P (s∗ = j|s = i)G(xm; cm

j , σm
j )∑C

i=1 P (s = i)
∑

j∈I(i) P (s∗ = j|s = i)G(xm; cm
j , σm

j )

and

g∗j (xm) = P (s∗ = j|xm, s = i) =
P (s∗ = j|s = i)G(xm; cm

j , σm
j )∑

j∈I(i) P (s∗ = j|s = i)G(xm; cm
j , σm

j )

Note that Equation 14 describes a hierarchical mixture of expert model (Jordan &
Jacobs, 1993) with gating networks gi(xm) and g∗j (xm) and simple expert networks
with constants outputs wi (see discussion in Section 7).

4. Learning: Generating Rules out of a Data Set

So far we only considered that NGBF-networks are constructed based on probabilis-
tic rules defined by a domain expert. In this section we show how we can generate
rules from data by first training NGBF-networks with the appropriate probabilistic
learning rule and by then extracting probabilistic rules to be analyzed by an expert.

We assume that the network structure is given, i.e., we know how many Gaussian
basis functions are required for modeling in Section 3.3 or for approximating the
class-specific density in Section 3.2. Model selection is discussed in Section 6.

We present learning rules for the simple non-hierarchical model; the learning rules
for the hierarchical model can be found in Appendix A. We assume that we have
K training data {xk, sk}K

k=1. First we consider the case that the state of sk is
unknown. In this case the log-likelihood function of the model6 is

L =
K∑

k=1

log[
N∑

i=1

P̂ (s = i) G(xk; ĉi, σ̂i)].

This is simply the log-likelihood of the Gaussian mixture model and we can use
the well-known EM (expectation maximization) algorithm for learning (Dempster,
Laird, & Rubin, 1977) which converges to a local maximum of the log-likelihood
function. The EM algorithm consists of the repeated application of the E-step and
the M-step. In the E-step, we estimate the states of the missing variables using our
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current parameter estimates. More precisely, the E-step estimates the probability
that xk was generated by component s = i

P̂ (s = i|xk) =
P̂ (s = i) G(xk; ĉi, σ̂i)∑N
l=1 P̂ (s = l) G(xk; ĉl, σ̂l)

.

The M-step updates the parameter estimates based on the estimate P̂ (s = i|xk)

P̂ (s = i) =
1
K

K∑
k=1

P̂ (s = i|xk), (15)

ĉij =

∑K
k=1 P̂ (s = i|xk) xk

j∑K
k=1 P̂ (s = i|xk)

, (16)

σ̂2
ij =

∑K
k=1 P̂ (s = i|xk) (ĉij − xk

j )2∑K
k=1 P̂ (s = i|xk)

. (17)

The EM algorithm is used off-line although approximate on-line versions also exist
(Nowlan, 1990; Neal & Hinton, 1993; Ghahramani & Jordan, 1993). The EM
algorithm can also be used if some of the features in xk are unknown or uncertain as
shown in Tresp, Ahmad and Neuneier (1994) and Ghahramani and Jordan (1993).

Alternatively, we can use a number of unsupervised learning rules, out of the
extensive literature on that topic, to determine the parameters in the Gaussian
mixture network such as learning vector quantization, Kohonen feature maps, or
adaptive resonance theory (see Hertz, Krogh, & Palmer, 1991). We prefer the EM
learning rules mainly because they have a sound statistical foundation by optimizing
the log-likelihood function.

5. Combining Knowledge Bases

In Section 3 we constructed networks of Gaussian basis functions using prior knowl-
edge and in the last section we trained mixture models from data to generate
NGBF-networks. In many applications we might have both training data and do-
main expert knowledge available and in this section we will show how both can be
combined (i.e., how the rule-based knowledge can be refined).

5.1. Incremental Mixture Density Models

The simple idea pursued in this section is to build one probabilistic model using
the rules defined by the domain expert and to build a second model using the
training data set and then to combine the two models to form a combined model
containing both sub-models. Let’s consider the example shown in Figure 5. The left
part of the model (s∗ ∈ {1, 2, 3}) is trained on data yielding P (s∗ = 1|s = 1), P (s∗ =
3|s = 1), P (s∗ = 3|s = 1), G(x; c1, σ1), G(x; c2, σ2), and G(x; c3, σ3). The right
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Figure 5. The left part of the model (s∗ ∈ {1, 2, 3}) is trained on data and the right part
(s∗ ∈ {4, 5, 6}) is constructed from rules defined by a domain expert.

portion (s∗ ∈ {4, 5, 6}) is constructed from rules defined by a domain expert yielding
P (s∗ = 4|s = 2), P (s∗ = 5|s = 2), P (s∗ = 6|s = 2), G(x; c4, σ4), G(x; c5, σ5), and
G(x; c6, σ6). The domain expert also has to define KE which defines the equivalent
number of training data the expert knowledge is worth, i.e., the certainty of the
expert knowledge. If K is the number of data used for training we obtain P (s =
1) = K/(K + KE) and P (s = 2) = KE/(K + KE). For inference, we can then use
Equations 8 and 13. If we obtain more data or more rules we can add models in
an obvious way and build up our knowledge base incrementally.

We have obtained a way of combining different knowledge bases or experts which
forms a solution by “voting” or “mixing,” which is distinct from standard Bayesian
approaches to learning where prior knowledge is incorporated in priors on network
parameters and network complexity (see the next section).

In analogy to Bayesian learning, we can add a default expert to the model who
represents our knowledge prior to the availability of a domain expert and prior to
the availability of data. Such a default expert might consist of one rule represented
by a Gaussian centered at cd = 0. The a priori weight of the default expert
represented by Kd should be a small number. If later other experts are added they
will dominate the prediction of the system where they are certain. In regions where
no other expert is “active” the default expert will dominate.
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5.2. Fine-Tuning: Bayesian Learning

As in the last section, we assume that a network was constructed from the proba-
bilistic rules defined by a domain expert. If only a relatively small number of train-
ing samples are available, adding another network might add too much variance to
the model and one might get better results by simply fine-tuning the network built
from the domain expert. This is the basic idea in a Bayesian approach (Bernardo &
Smith, 1993; Buntine & Weigend, 1991; MacKay, 1992). Let PM

W (x) denote a model
of the probability density of x with parameter vector W (i.e., {ci, σi, P (s = i)}N

i=1).
In an Bayesian approach the expert has to define P (W ) which is the prior distri-
bution of the parameters. The predictive posterior probability is then

PM (x|Data) =
∫

PM (x|W )PM (W |Data) dW (18)

with

PM (W |Data) =
PM (Data|W )PM (W )

PM (Data)
.

Here, PM (Data|W ) =
∏K

k=1 PM (xk|W ) is the likelihood of the model. A com-
monly used approximation is

PM (x|Data) ≈ PM (x|WMAP )

where

WMAP = arg max
W

PM (Data|W )PM (W )

i.e., one substitutes the parameters with the maximum a posterior (MAP) proba-
bility.

In a Bayesian approach the expert has to specify an a priori parameter distribution
PM (W ). When the expert can formulate her or his knowledge in terms of conjugate
priors the EM update rules can be modified to converge to the MAP parameter
estimates (Buntine, 1994; Ormoneit & Tresp, 1996).

A similar combination of prior knowledge and learning can be achieved by a
procedure which is known as early stopping in the neural network literature (Bishop,
1995). Early stopping refers to a procedure where training is terminated before the
minimum of the cost function is reached to obtain a regularized solution. We can
use early stopping here in the following way. First, we build a network using prior
rules. This network is used as the initialization for learning (using EM). If we
train to convergence we completely eliminate the initialization (although we still
influence which local optimum of the log-likelihood function is found) and if we do
not train at all we ignore the data. If we train only a few iterations (early stopping)
the resulting network will still contain a bias towards the initialization i.e., the prior
knowledge.
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5.3. Teacher-Provided Examples

Finally, we would like to present a third alternative. This approach is particularly
interesting when it is not possible to formulate the domain knowledge in the form of
probabilistic rules, but a domain expert is available who can be queried to provide
typical examples. We want to penalize a model if the examples provided by the
domain expert {xt,l}L

l=1 are not well represented by the model with parameter
vector W . This can be put into a Bayesian framework if we define

PM (W ) ∝
L∏

l=1

PM (xt,l|W ).

The MAP estimate then maximizes

PM (W |Data) ∝
L∏

l=1

PM (xt,l|W )
K∏

k=1

PM (xk|W ).

Since the prior has the same form as the likelihood, the examples provided by the
expert can be treated as additional data (see Röscheisen, Hofmann, & Tresp, 1992).
The extended data set is now {xk}K

k=1 ∪ {xt,l}L
l=1.

6. Network Optimization and Experiments

6.1. The Test Bed

As a test bed we used the Boston housing data. The data set consists of 506 samples
with 14 variables. The variables are the median value of homes in Boston neigh-
borhoods and 13 variables which potentially influence the housing prices (Harrison
& Rubinfeld, 1978). The variables are described in Appendix B. We selected this
data set because all variables have an easily understandable real-world meaning.
All variables were normalized to zero mean and a standard deviation of one. Un-
less stated otherwise we divided the data into 10 equally sized sets. Ten times
we trained on nine of the sets and tested on the left out set. The performance
on the test sets was used to derive error bars for the generalization performance
(Figures 6, 7 and 8) and for the two-tailed paired t-test in Section 6.3’s Figure 9.
The nine sets used for training are each equally divided into a training set and a
validation set. The training set is used for learning the parameters in the networks
and the validation set is used for determining optimal network structures in the
following experiments.

6.2. Network Optimization and Rule-extraction
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Figure 6. The graph shows the negative average log-likelihood for training set, validation set and
test set as a function of the number of Gaussian units. Displayed are averages over ten experiments
with different separations into training set, validation set and test set. The error bars indicate
the variation in performance on the test set.

Our first goal is to extract meaningful rules out of the data set. In this data
set it is not known a priori how many Gaussians units are required to model the
data. Our strategy is to start with a network with a rather large number of units
and then to remove units by observing the network performance on the validation
data set.7 After a Gaussian is removed the network is retrained using the EM
learning rules of Section 4. To select good candidate units to be pruned one might
want to select a unit with a small probability of being chosen, i.e., with a small
P (s = i). But this unit might represent data points far away from the centers of
the remaining Gaussians and those data points would then be represented badly
by the remaining network after that unit is eliminated. A better way to prune is
therefore to tentatively remove a unit and then recalculate the likelihood of the
model on the training data set (without retraining), finally, pruning units whose
removal decreases the likelihood the least (pruning procedure 1). In some cases
this procedure might be too expensive (e.g. if there are too many training data
or units) or the data set might not be available any more (as in on-line learning).
In those cases we might decide to remove a unit which is well represented by the
other units. Consider that we want to estimate the effect of the removal of the
j-th unit. After removal, the data which were modeled by the j-th unit are now
modeled by the remaining Gaussian units. The contribution of these data points
to the log-likelihood function after removal of the j-th unit can be estimated as

L(j) ≈ K × P (s = j) log
∑
i,i 6=j

P (s = i)P (cj |s = i). (19)



REPRESENTING PROBABILISTIC RULES WITH NETWORKS OF GBFS 19

K ×P (s = j) is an estimate of the number of data points modeled by the j-th unit
and the sum in the logarithm is equal to the probability density at x = cj after the
removal of unit j. The procedure consists of removing the unit with smallest L(j)
(pruning procedure 2). Our experiments showed that both pruning procedure 1
and pruning procedure 2 almost always decide on the same order of units to prune.

In the experiments we started with 30 units and trained a Gaussian mixture model
using the EM algorithm (Section 4). We then proceeded to prune units following
pruning procedure 2. Each time a unit was removed, the network was retrained
(using the EM algorithm).

In Figure 6 we plot the negative average log-likelihood as a function of the number
of units in the network for the training data set, for the validation set and for the
test data set. A good model has a small negative average log-likelihood. The large
difference between test set and training set with a large number of units can be
explained by the large variance in the network due to the large number of units.
Based on the performance on the validation set we can conclude that between 8
and 10 units are necessary for a good model. In the following experiments we used
networks with three units since three units are sufficient for acceptable performance
(Figure 6) and the extracted rules are easily interpretable (see the following section).
If more units are used the performance is better but the larger number of rules is
more difficult to interpret.

6.2.1. Simplifying Conclusions

We can attempt to further simplify the model. To motivate this step, consider
an example from medical diagnosis. To diagnose diseases we might consider 100
features or symptoms. Certainly, all symptoms are important but in most cases the
diagnosis of a disease is only dependent on a small number of features and ignores
the remaining ones. Therefore, rules of the form: IF the patient has disease A
THEN feature one (fever) is high but all other features (here: 99) are normal seems
reasonable. In this spirit, we bias the model to set as many of the conclusions as
possible to “normal” to obtain very parsimonious rules.

In this medical example it might be clear a priori or from the data set what ex-
actly a “normal” feature distribution means. In our data set this is not so obvious.
Therefore, we simply calculate mean meanj and standard deviation stdj of each
variable xj in the network and define a normal feature j as one which is distributed
as P (xj) ≈ G(xj ;meanj , stdj). Remember that in our model G(xj ; cij , σij) repre-
sents the j-th conclusion of the i-th rule. In the first step we find conclusions which
are close to “normal” which means that

G(xj ; cij , σij) ≈ G(xj ;meanj , stdj)

holds. A useful measure for the difference between two distributions is the Kullback-
Leibler distance (Cover & Thomas, 1991). The Kullback-Leibler distance between
the two continuous probability densities P1(x), P2(x) is defined as
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Figure 7. The graph shows the negative average log-likelihood of for training set, validation
set and test set as a function of the number of unconstrained conclusions using a network with
three Gaussian units. Displayed are averages over ten experiments with different separations into
training set, validation set and test set. The error bars indicate the variation in performance on
the test set.

KL(P1(x), P2(x)) =
∫

P1(x) log[
P1(x)
P2(x)

] dx.

Applied to our problem, and exploiting the assumption that features are Gaussian
distributed we obtain

KL(G(xj ; cij , σij), G(xj ;meanj , stdj)) (20)

= log[
σij

stdj
] − 1

2
+

std2
j + (cij − meanj)2

2σ2
ij

.

In the experiments we rank each conclusion of each Gaussian according to the
distance measure in Equation 20. Assuming that for the j-th conclusion of the
i-th Gaussian the Kullback-Leibler distance in Equation 20 is smallest, we then set
cij → meanj and σij → stdj . Figure 7 shows the negative average log-likelihood
for training set, validation set and test set as a function of the number of conclu-
sions which are not set to “normal” using a system with three units. We see that
approximately 10 features can be set to normal without any significant reduction
in performance (leaving 32 unconstraint conclusions). Tables 4 and 5 summarize
an example of a resulting network.

The first rule or Gaussian unit (i = 1), for example, can be interpreted as a rule
which is associated with a high housing price (feature 14). It translates into the
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Table 4. Centers and scaling parameters in the trained network with three Gaussian units.

feature (j) cij σij

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

1 -0.40 1.20 -0.28 0.20 1.76 0.20
2 normal -0.49 -0.41 normal 0.20 0.33
3 -0.84 1.02 0.61 0.41 0.20 0.94
4 -0.25 -0.27 0.62 0.31 0.20 1.65
5 -0.69 1.02 normal 0.52 0.50 normal
6 normal normal normal normal normal normal
7 -0.65 0.75 0.63 0.90 0.46 0.61
8 0.66 -0.83 -0.58 0.96 0.28 0.49
9 -0.59 1.66 -0.42 0.20 0.20 0.57
10 -0.68 1.53 -0.10 0.33 0.20 0.70
11 normal 0.81 normal normal 0.20 normal
12 0.37 -0.83 normal 0.20 1.63 normal
13 -0.62 0.94 normal 0.54 0.90 normal
14 0.47 -0.82 normal 0.92 0.71 normal

Table 5. Prior probabilities for the units (P (s = i)) of the trained network with three Gaussian
units.

i: 1 2 3
P (s = i) : 0.48 0.25 0.27

rule shown in Table 6. According to the rule a low crime rate (feature 1) and a
low percentage of lower status population (feature 13) are associated with a high
house price. Similarly, Gaussian unit (i = 2) can be interpreted as a rule which is
associated with a low housing price and Gaussian unit (i = 3) can be interpreted
as a rule which is associated with an average housing price.

Table 6. Extracted rule for i = 1.

IF: s = 1 (which is the case with prior probability 0.48)
THEN: the expected value of crime is −0.40 and the standard deviation of

crime is 0.20
AND zn is normal
. . .
AND the expected value of mv is 0.47 and the standard deviation of mv is 0.92

6.2.2. Removing Variables (Input Pruning)

The Gaussian units model the relationship among the 14 variables. More pre-
cisely, they model their joint probability density which allows the calculation of
many quantities of interest such as conditional densities and expected values (i.e.,
inference, Equation 11 and 12). As a drawback, the Gaussian mixture model does
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Figure 8. The graph shows the negative average conditional log-likelihood of validation set and
test set as a function of the number of input variables using a network with three Gaussian units.
Displayed are averages over ten experiments with different separations into training set, validation
set and test set. The error bars indicate the variation in performance on the test set.

not provide any information about independencies between variables as, for ex-
ample, Bayesian networks are capable of doing (Pearl, 1988; Heckerman, 1995;
Heckerman, Geiger, & Chickering, 1995; Buntine, 1994; Hofmann & Tresp, 1996).
Here, we want to address the simpler question of which variables are required to
predict one particular variable. It is well known that the removal of variables which
are not relevant for the prediction often improves the performance of a predictor.
Variables can be removed if they are either completely independent of the variable
to be predicted or if the information which is contained in a variable is already rep-
resented in the remaining variables: as an example consider that an input variable
is a linear or a nonlinear function of the remaining input variables.

Let y be the variable to be predicted; y is independent of an input variable, say
xj , conditioned that we know the remaining variables if

P (y|{x1, . . . , xM}) = P (y|{x1, . . . , xM} \ xj).

Since the true underlying model is unknown we have to base our decision on the
available data. We evaluate the conditional log-likelihood which is defined as

LC =
K∑

k=1

log PM (yk|xk
1 , . . . , xk

M ) (21)

where PM (.) is calculated according to the model (Equation 11).
Our procedure consists of removing one variable and by calculating the conditional

log-likelihood with that variable removed. We remove that variable for which the
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Table 7. The order of removal of variables.

no: 1 2 3 4 5 6 7 8 9 10 11 12 13
variable: chas rad dis crim indus nox age tax p/t zn b rm lstat

conditional log-likelihood decreased the least. We selected the housing price as
the variable to be predicted. Figure 8 shows the negative average conditional log-
likelihood for the validation set and the test set as a function of the number of
(input) variables. At approximately three variables, the conditional likelihood is
optimal. We can conclude that for the prediction of the housing price the infor-
mation in the removed variables is either redundant or already contained in these
three variables. Table 7 shows the order in which variables are pruned.

From our model (with three inputs and one output) we can now predict the
housing price using Equation 12.

6.3. Experiments with Rule-based Bias

In our second set of experiments we compared the various approaches for combining
prior knowledge and learning from data. We designed our own “naive” rule base.
The rule base consists of three rules. In rule 1 we tried to capture the concept of
a normal neighborhood. Here we set the centers to the mean of the features, i.e.,
0. In the second rule we tried to capture the properties of a wealthy neighborhood.
To indicate a high value for feature xj we set the center in that dimension to the
standard deviations of the features +stdj , i.e., 1, and to indicate a low value we set
the corresponding value to −stdj , i.e., −1. Our third rule captures the properties
of a poor neighborhood which contains conclusions opposite to rule 2. The scaling
parameters of all rules are set to +stdj . Table 8 summarizes the three rules. The
network generated out of these rules is the expert network.

Table 8. Prior rules. The scaling parameters are always equal to one. A plus (+) indicates that
the Gaussian of the conclusion is centered at +stdj , a minus (−) indicates that the conclusion
is centered at −stdj and a zero (0) indicates that the conclusion is centered at 0. The prior
probabilities of each rule i is set to P (s = i) = 1/3.

j : 1 2 3 4 5 6 7 8 9 10 11 12 13 14

i = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i = 2 - + - + - + - + - + - - - +
i = 3 + - + - + - + - + - + + + -

In the first experiment, we trained a second network (the data network) to model
the data using EM. We trained the data network using a varying number of training
data randomly drawn out of the training data set. If more than 10 samples were
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Figure 9. Top: The graph shows the negative average log-likelihood of the test set as a function
of the number of training samples. Displayed are averages over ten experiments with different
separations into training set, validation set, and test set. The dotted line shows the performance
of a network trained only with training data. The dashed line shows the performance of the
network using the incremental mixture density model (Section 5.1), the continuous line shows
the performance of the fine-tuned network (Section 5.2), and the dotted-dashes line shows the
performance of a network trained with a mixture of training data and data supplied by the
domain expert (Section 5.3). Bottom: Shown are the test statistics for matched pairs between the
network trained only on data and the approaches using prior knowledge (two-tailed paired t-test,
Mendenhall & Sincich, 1992) based on the performance on the ten test sets. The null hypothesis
is that there is no difference in performance between the network trained only on data and the
approaches using prior knowledge. Outside of the dotted region, the null hypothesis is rejected
(based on a 95% confidence interval). The incremental mixture density model and the fine-tuned
network are significantly better than the network trained only on data up to approximately 70
training samples. The network trained with a mixture of training data and data supplied by the
domain expert is only significantly better up to approximately 19 training samples.
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used for training, the network consisted of ten units. If less than ten samples were
available, the network consisted of as many units as samples. The dotted line in
Figure 9 (top) shows the negative average log-likelihood as a function of the number
of training data.

In the second experiment we investigated the incremental mixture density ap-
proach of Section 5.1. We set Kprior = 50 which indicates that our prior knowledge
is worth 50 data points. We used the data network of the previous experiment
in combination with the expert network as described in Section 5.1. The dashed
line in Figure 9 (top) shows the negative average log-likelihood as a function of the
number of training data.

In the third experiment we studied the Bayesian approach. We designed a network
in which each rule in Table 8 is represented 3 times (so we obtain 9 rules). In this
way we give the network sufficient resources to form a good model (with 9 instead
of 3 units). We then fine-tuned the rules using EM update rules to find the MAP
weights (Section 5.2). The continuous line in Figure 9 (top) shows the negative
average log-likelihood of the fine-tuned network as a function of the number of
training data.

In the final experiment we used teacher-provided examples, Section 5.3, by gen-
erating 100 samples according to the network defined by the expert following the
probabilistic model. These data were supplemented by real training data and a
network of 10 units was trained using EM. The dash-dotted line in Figure 9 (top)
shows the negative average log-likelihood as a function of the number of training
data.

Figure 9 (bottom) shows the test statistics for the two-tailed paired t-test to
decide if including prior knowledge is helpful. Outside of the region defined by the
two dotted lines, the methods including prior knowledge are significantly better
than the network trained only on data. The results indicate clearly that with only
a small number of training data available, prior knowledge can be very beneficial.
The Bayesian approach and the incremental mixture density approach consistently
outperforms the network which was trained solely on data up to a training set of up
to approximately 70 samples. This indicates that the network structures defined
by the rules are appropriate for this problem. The approach using teacher-provided
examples is only better in comparison to the network which was trained solely on
data up to a training set size of up to approximately 19 samples. The reason for the
relatively bad performance of the latter approach is that only 100 artificial samples
were generated and these cover only a small region of interest in the input space.
To obtain better performance, many more teacher-supplied examples need to be
used.
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7. Modifications and Related Work

7.1. Mixtures of Experts

There is a strong connection of our approach with the mixtures of experts networks
and their variations (Hampshire & Waibel, 1989; Jacobs et al., 1991; Jordan &
Jacobs, 1993). The output of a mixtures of experts network is

y(x) =
∑

i

gi(x) oi(x), (22)

where oi(x) is the output of the ith expert network, typically a feedforward neural
network. gi(x) = P (i|x), the ith output of the gating network, stands for the
probability of choosing expert i given the input x. The similarity to our approach
becomes apparent if we identify gi as ni and oi as wi in Equation 1. In this
interpretation each component in our model (i.e., Equation 1) is a — pretty boring
— expert who always concludes wi. On a further note, our incremental mixture
model resembles the hierarchies of experts networks of Jordan and Jacobs (1993).
The output of that model is

y(x) =
∑
m

[gm(x)
∑

i

gim(x) oim(x)].

The relationship to Equation 14 is apparent. The main difference between the mix-
ture of experts model and our approach is that we model the joint distribution of all
variables whereas the mixture of experts model models the conditional distribution
of the output variable given the input variables.

In this context we can interpret the learning rules in Appendix A to be a way of
training hierarchical mixtures of experts using EM where both the E-step and the
M-step can be calculated in closed form.

7.2. Discrete Variables

So far we only considered continuous features and Gaussian densities. As pointed
out by Ghahramani and Jordan (1993) the mixture formalism as well as the ef-
ficient EM update algorithm extends readily to any component density from the
exponential family. In particular for discrete features, binomial and multinomial
distributions are more appropriate than Gaussian densities. For more detail, see
Ghahramani and Jordan (1993) and Bernardo and Smith (1993).

7.3. Supervised Training of the Network

In many applications it is known a priori which variables are the input variables and
which variable is the output variable and instead of training the model to predict
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the distribution of the joint input/output space using a mixture of Gaussian model
we can directly train it to predict the conditional expected value E(y|x). This can
be achieved by optimizing all network parameters to minimize the mean squared
training error Equation 3 as indicated in Section 2 (supervised learning). It is often
advantageous to initialize the network to form a probabilistic model of the joint
density and only perform supervised learning as post-processing: The probabilistic
model gives useful initial values for the parameters in supervised learning. If we
adapt all network parameters to minimize the prediction error, we cannot interpret
bi(x) in Equation 1 as a conditional input density; we might rather think of bi(x)
as the weight (or the certainty) of the conclusion wi given the input.8 During
supervised training, the centers and output weights — unless special care is taken
— wander outside of the range covered by the data and it becomes more difficult to
extract meaningful rules. In Tresp, Hollatz and Ahmad (1993) rule-extraction and
rule-prestructuring for networks trained with supervised learning are described.

8. Conclusions

The presented work is based on the three-way relationship between networks of
NGBFs, Gaussian mixture models, and simple probabilistic rules. We discussed
four aspects. First we showed how probabilistic rules can be used for describing
structure between variables. If we perform inference using those rules we obtain a
networks of NGBFs. Second, we showed that it is possible to extract probabilis-
tic rules out of a networks of NGBFs which were trained on data using the EM
algorithm. Third, we presented ways to optimize the network architecture, i.e.,
the number of Gaussian units and we presented ways to constrain the number of
free parameters of the network. Finally we described several ways prior knowledge,
formulated in probabilistic rules, can be combined with learning from data. The
experiments show that with only few or no training data available prior knowledge
can be used efficiently by the proposed methods. In particular, the incremental
mixture density approach and the Bayesian approach gave good results. One of the
main advantages of our approach is that it is based on probabilistic models. This
allows us to obtain insight into the structure of the data by being able to extract
probabilistically correct rules. Also, in our approach the joint probability distribu-
tion of all variables involved are modeled which provides much more information
than is available in standard supervised learning. For example, we can handle miss-
ing data very elegantly and also can produce inverse models without any difficulty,
which is not possible in networks trained using supervised learning algorithms.
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Appendix A

Learning Rules for the Hierarchical Model

We derive learning rules for the hierarchical model. We assume that we have K
training data {xk}K

k=1. We consider the incomplete data case in which neither sk

or s∗k are known. In this case the log-likelihood function is

L =
K∑

k=1

log[
C∑

l=1

P̂ (s = l)
N∑

m=1

P̂ (s∗ = m|s = l)G(xk; ĉm, σ̂m)].

The EM algorithm consists of the repeated application of the E-step and the M-
step. In the E-step, we estimate the states of the missing variables using our current
parameter estimates. More precisely, the E-step estimates the probability that xk

was generated by component s∗ = j. Assuming that j ∈ I(i)

P̂ (s∗ = j|xk) =
P̂ (s = i) P̂ (s∗ = j|s = i) G(xk; ĉj , σ̂j)∑C

l=1 P̂ (s = l)
∑N

m=1 P̂ (s∗ = m|s = l)G(xk; ĉm, σ̂m)
.

Note that for complete patterns, P̂ (s∗ = j|xk) is equal to one if s∗k = j and is
equal to zero otherwise.

The M-step updates the parameter estimates based on the estimate P̂ (s∗ = j|xk)

P̂ (s = i) =
1
K

K∑
k=1

∑
j∈I(i)

P̂ (s∗ = j|xk), (A.1)

P̂ (s∗ = j|s = i) =
1
K

K∑
k=1

P̂ (s∗ = j|xk)∑
m∈I(i) P̂ (s∗ = m|xk)

, (∀j ∈ I(i)), (A.2)

ĉjl =
∑K

k=1 P̂ (s∗ = j|xk) xk
l∑K

k=1 P̂ (s∗ = j|xk)
, (A.3)

σ̂2
jl =

∑K
k=1 P̂ (s∗ = j|xk) (ĉjl − xk

l )2∑K
k=1 P̂ (s∗ = j|xk)

. (A.4)

Appendix B

Boston housing data

Table B.1 describes the features in the Boston housing data set.
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Table B.1. The variables and their abbreviations.

1 crime rate crim
2 percent land zoned for lots zn
3 percent nonretail business indus
4 1 if on Charles river, 0 otherwise chas
5 nitrogen oxide concentration, pphm nox
6 average number of rooms rm
7 percent built before 1940 age
8 weighted distance to employment center dis
9 accessibility to radial highways rad
10 tax rate tax
11 pupil/teacher ratio p/t
12 percent black b
13 percent lower-status population lstat
14 median value of homes in thousands of dollars mv

Notes

1. The Gaussian basis function weights κi were not used by Moody and Darken.

2. Gaussian mixtures are introduced in Sections 3 and 4.

3. Note that the first level of hierarchy has the flavor of a disjunction of the form: IF s = i THEN
s∗ = j1, or s∗ = j2, . . . (with the appropriate probabilities). Since the second level implements
a conjunction we obtain disjunctions of conjunctions.

4. We use E() to indicate the expected value.

5. Often a subset of the components of x is considered to describe input variables and the re-
maining components are output variables. This result indicates that “inverse” models in which
one of the input variable is estimated from knowledge about the states of output variables and
other input variables can be calculated as easily as forward models.

6. The likelihood of a sample of K observations is the joint probability density function of the
observations given the model and model parameters. The maximum likelihood parameter
estimator is the set of parameters which maximize the likelihood. Since the logarithm is
a monotonic function we can alternatively maximize the log-likelihood which is in general
computationally simpler. Note, that the hat (ˆ) indicates an estimated quantity.

7. Bayesian approaches to model selection are used in the AutoClass system by Cheeseman et al.
(1988).

8. Under certain restrictions, fuzzy inference systems can be mapped onto a network of normal-
ized basis functions as described by Wang and Mendel (1992) and Hollatz (1993).
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