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Abstract—As a result of the recent trend towards digi-
tization —which increasingly affects evidence-based medicine,
accountable care, personalized medicine, and medical “Big Data”
analysis— growing amounts of clinical data are becoming avail-
able for analysis. In this paper, we follow the idea that one can
model clinical processes based on clinical data, which can then
be the basis for many useful applications. We model the whole
clinical evolution of each individual patient, which is composed
of thousands of events such as ordered tests, lab results and
diagnoses. Specifically, we base our work on a dataset provided
by the Charité University Hospital of Berlin which is composed
of patients that suffered from kidney failure and either obtained
an organ transplant or are still waiting for one. These patients
face a lifelong treatment and periodic visits to the clinic. Our
goal is to develop a system to predict the sequence of events
recorded in the electronic medical record of each patient, and
thus to develop the basis for a future clinical decision support
system. For modelling, we use machine learning approaches
which are based on a combination of the embedding of entities
and events in a multidimensional latent space, in combination
with Neural Network predictive models. Similar approaches have
been highly successful in statistical models for recommendation
systems, language models, and knowledge graphs. We extend
existing embedding models to the clinical domain, in particular
with respect to temporal sequences, long-term memories and
personalization. We compare the performance of our proposed
models with standard approaches such as K-nearest neighbors
method, Naive Bayes classifier and Logistic Regression, and
obtained favorable results with our proposed model.

I. INTRODUCTION

It is well known that data observed in clinical practice can
lead to important insights and can complement information
gathered from controlled clinical studies [1]. One argument
is that data from clinical practice reflects the natural mix
of patients whereas patients participating in clinical studies
typically have another composition: they are carefully selected,
they should not have other problems as the one under study,
and they should not receive any other treatment. Also, a future
personalized medicine needs to be based on many attributes
from a large number of patients, information that can be
collected from data recorded during the clinical practice [2],
[3].

In this paper we focus on the prediction of clinical events,

such as decisions, procedures, measurements and other ob-
servations. We model the whole evolution of each individual
patient, which is composed of thousands of single events.
A good predictive system could have many applications, for
example, as part of a decision support system that predicts
common practice in a clinical setting and which could alert
in case of unusual orders. Eventually, a predictive system
could also be used to optimize decisions, although here,
confounding variables can be a problem. If many dimensions
are measured, the available information might include direct
or indirect information on important confounders, alleviating
the problem [4], [3].

We are addressing the issue from a “Big Data” perspective
and use a large data set collected from patients that suffered
from kidney failure. The data was collected in the Charité
hospital in Berlin and it is the largest data collection of its kind
in Europe. Once the kidney has failed, patients face a lifelong
treatment and periodic visits to the clinic for the rest of their
lives. Until the hospital finds a new kidney for the patient, the
patient must attend to the clinic multiple times per week in
order to receive dialysis, which is a treatment that replaces
many of the functions of the kidney. After the transplant
has been performed, the patient receives immunosuppressive
therapy to avoid the rejection of the transplanted kidney. The
patient must be periodically controlled to check the status of
the kidney, adjust the treatment and take care of associated
diseases, such as those that arise due to the immunosuppressive
therapy. The usual procedure at the Charité University Hospital
of Berlin for these periodic evaluations is that the visiting
patient undergoes some laboratory testing in the morning,
followed by the prescription of pertinent medications in the
afternoon based on the results of the test.

The dataset contains every event that happened to each pa-
tient concerning the kidney failure and all its associated events:
medications prescribed, hospitalizations, diagnoses, laboratory
tests, etc. [5], [6]. The dataset started being recorded more than
30 years ago and it is composed of more than 4000 patients
that underwent a renal transplantation or are waiting for it. For
example, the database contains more than 1200 medications
that have been prescribed more than 250000 times, and the
results of more than 450000 laboratory analysis. The database



has been the basis for many studies in the past [7], [8], [9],
[10]. In this work we study if future events for a patient
can be predicted given the past events of the same patient.
This is particularly important for the estimation of drug-
drug interactions (DDI) and adverse drug reactions (ADR) in
patients after renal transplantation.

Note that the data is extremely high-dimensional (there are
thousands of diagnosis, procedures, lab results to consider)
and sparse, since most combinations are unobserved. In recent
years a number of approaches for this type of data situation
have been developed in other application fields. These ap-
proaches are based on the concept of a low-dimensional latent
embedding of the entities and events of interest in combination
with Neural Network models and showed superior predictive
performance in their respective domains. Examples are leading
language models in natural language processing [12], the
winning entries in the Netflix competition for the development
of movie recommendation systems [11] and approaches for
learning in knowledge graphs [13]. A new aspect here is that
the temporal sequence of events plays an important role. In
this paper we extend these models to be applicable towards
temporal sequential models for the prediction of events in a
clinical setting and we develop a new model that extends the
Markov property of language models towards a personalized
model and a long-term memory. We compare the prediction
accuracy of these approaches with other leading modelling
approaches such as a nearest neighbor methods, Naive Bayes
classifier and Logistic Regression models.

The paper is organized as follows. In the next section we
introduce the proposed models for this work. In Section IV
we describe details of the nephrology use case and describe
the data structure in detail. In Section V we explain the ex-
perimental set ups and present its results. Section VII contains
our conclusions and an outlook.

II. RELATED WORK

There have been efforts within the medical domain to
simultaneously predict a reduced number of events [14] [15]
and also to detect patterns within a larger amount of events
[16]. Our dataset consists of sequences of high-dimensional
sparse data and in this situation latent embedding approaches
as used in language models [12], collaborative filtering [11]
and knowledge graph models [13] have been very successful.
In these models, the latent embeddings represent general
entities such as users, items, or simply words, and the idea
is that the embeddings represent the essence of the entities in
form of low-dimensional real-valued representations. Latent
embeddings were introduced as a suitable strategy for clinical
data in [17] by predicting hospital readmissions. In this work
we will show how to predict the sequence of a large amount
of clinical events by developing a temporal latent embedding
model.

III. TEMPORAL LATENT EMBEDDINGS FOR PREDICTING
CLINICAL EVENTS

In this section we extend latent embedding models to be ap-
plicable to clinical data which consist of temporal sequences of
high-dimensional sparse events. In particular, in our approach
the latent embeddings describe the state of the patient at a

given time. Another extension is that we complement the short-
term memory of language models with a long-term memory
by including a representation of the complete clinical history
of the patient.

A. The Basic Data Structures

A recorded event in our data is based on the schema
event(Time, Patient, EventType, Value). Time stands for the
time of the event and is represented as the day of the event.
Note that several events can happen at the same time. Patient
stands for the patient ID and EventType for the type of
the event, such as a specific diagnosis, a specific prescribed
medication, a specific laboratory result and so on. For events
like prescribed medications the value is equal to 1 if this
particular event happens for the patient at time Time=t and
is equal to 0 otherwise. For laboratory results such as Calcium
or Blood count, we used a binary encoding and represented
each measurement as three event types, i.e., LabValueHigh,
LabValueNormal and LabValueLow.

These events can be stored in a three-way tensor X with
dimensions Time, Patient, and EventType. The tensor entry
xt,i,j with t = 0, . . . , T , i = 0, . . . , I , j = 0, . . . , J is
the value of the tuple event(Time=t, Patient=i, EventType=j,
Value). The tensor is extremely sparse and is stored in form
of a sparse data structure. The task of the learning approach
is to predict tensor entries for patients in the test set. In
particular we predict entries in a second tensor Θ, with the
same dimensions as X , that contains the patients in the test
set. The relationship between both is defined by the sigmoid
function P (xt,i,j = 1) = sig(θt,i,j).

There are a number of interesting challenges in the dataset.
Time plays an essential role and we are dealing with sequences
of events but absolute time is of little value and a patient-
specific normalization of time is non-trivial. Also the tensor
X initially contains only data about the patients in the training
dataset; our real goal of course is to obtain valid predictions
for test patients which are not part of the training data without
an expensive retraining of the model.

In the next subsections we will describe the Temporal
Latent Embedding models we have used in the experiments.
In the next subsection we describe the model which is based
on the complete patient history up to time t. Subsection III-C
then describes a Markov model that is based only on a recent
history and Subsection III-D describes a combination of both.

B. Patient History Embedding

We define an aggregation tensor X̃ with entries x̃t,i,j . Here,
x̃t,i,j is an aggregation of {xt′,i,j}t′=1,...,t, i.e., of all events
that happened to patient i up to time t. In the experiments we
used different aggregation functions (see Section V). x̃t,i,j is
supplemented with dimensions encoding background patient
information such as age, gender and so on.

We then model

θt,i,j = fj(h
hist
t−1,i).

Here, hhist
t,i is an r-dimensional real vector that represents the

embedding of patient i at time t, based on all information



observed for that patient until time t. We call r the rank of the
embedding.

Since we want to apply the learned model easily to new
patients, we assume that the embeddings can be calculated as
a linear function of the events that are associated with patient
i up to time t, with

hhist
t,i = Ax̃t,i,:

where x̃t,i,: is a J-dimensional vector and A ∈ Rr×J is a
matrix of learned weights. Thus hhist

t,i is a latent representation
of the history of the patient i until time t. In a related but
slightly different interpretation, we can also think of the j-
th column of A as the latent embedding representation of
event type j. As in other embedding approaches, the model
has the ability to form similar latent representations for event
types which have a similar semantics, i.e. for medications with
comparable effects.

Note, that if fj(·) is a linear map, we obtain a factorization
approach, as used in collaborative filtering. In our experiments,
the functions fj(·) are nonlinear maps and are modelled by a
multi-layer Perceptron (MLP) with J outputs, as also used
in [12] and [13].

C. Markov Embeddings

In a K-th order Markov model, the events in the last
K time steps are used to predict the event in the next time
step. Markov models are used in language models where an
event would correspond to an observed word [12]. Some of
the leading approaches in computational linguistics [18], [19]
are then using learned word embeddings to realize a number
of applications and we will also pursue this approach in this
paper.

More precisely, our model is

θt,i,j = fj(h
Mar
t−1,i, h

Mar
t−2,i, . . . , h

Mar
t−K,i).

Note that in this model h Mar
i,t is an an r-dimensional embedding

of all the observed events for patient i at time t. Note also that,
in contrast to the situation in language models, several events
can happen at the same time.

As before, we assume that there is a linear map of the form

h Mar
t,i = Bxt,i,:

where xt,i,: is a J-dimensional vector that contains all ob-
served events for patient i at time t.

We can think of h Mar
t,i as the latent representation of patient

i at time t based on all events that happened to the patient at
time t. In contrast, hhist

t,i was the presentation of all events that
happened to patient i until time t.

Again the j − th column of B is representing latent
embedding of event type j. The overall architecture in shown
in Figure 1.

D. Personalized Markov Embeddings

The Markov model so far is independent of the individual
patient history but it makes sense to assume that this history

Fig. 1. Markov embedding model for predicting sequences of clinical events
by taking the previous time steps as inputs.

would be relevant for predicting events. Thus, we include hhist
t,i

in the Markov model in the form

θt,i,j = fj(h
hist

t,i , h
Mar

i,t−1, h
Mar

i,t−2, . . . , h
Mar
i,t−K).

The overall architecture is shown in Figure 2.

E. Modelling the Function

In the language models of [12], fj(·) was modelled as a
standard multi-layer Perceptron neural network (MLP) with
one hidden layer. A similar representation was used in mod-
elling knowledge graphs as described in [13]. We use the same
MLP structure here, where we also experimented with different
numbers of hidden layers. In the following, the set of all MLP
parameters is denoted by W = {w}.

F. Cost Function

We derive a cost function based on the Bernoulli likelihood
function, also known as Binary Cross Entropy, which has the
form:

cost(A,B,W ) =∑
t,i,j∈Tr

−xt,i,j log(sig(θt,i,j))− (1−xt,i,j) log(1− sig(θt,i,j))

+λw
∑
w∈W

w2 + λa

r∑
l=1

J∑
j=1

a2i,j + λb

r∑
l=1

J∑
j=1

b2i,j

Note that we added regularization terms to penalize large MLP
parameters w and large embedding parameters ai,j and bi,j .
Here, λw, λa, and λb are regularization parameters. Tr stands
for the training data set and sig is the sigmoid function.



Fig. 2. Personalized Markov embedding model. It predicts the observed events within the next time step given the patient history and the previous time steps
as inputs.

IV. THE USE CASE

A. Kidney Diseases and their Treatments

Kidney diseases are causing a significant financial burden
on all health systems worldwide. Here we describe the situ-
ation in Germany. It is estimated that alone the treatment of
end-stage renal disease (ESRD) with chronic renal replacement
therapies accounts for more than 2.5 billion Euros annually,
and the incidence of dialysis-dependent renal insufficiency is
rising by 5-8% each year [20]. Despite progress in diagnosis,
prophylaxis and therapy of chronic kidney diseases, renal
transplantation remains the therapy of choice for all patients
with ESRD. Kidney transplantation leads to a significant
improvement of quality of life, to substantial cost savings and
most importantly to a significant survival benefit in relation
to all other renal replacement therapies. Only approximately
2300 kidney transplantations were performed in Germany in
2013 but more than 8000 patients are registered on the waiting
list for a kidney transplant [21]. With excellent short term
success rates, nowadays the reduction of complications and
the increase of long-term graft survival are the main goals
after transplantation, especially on the background of the
dramatic organ shortage. It is not only important to reduce
- or better avoid - severe and/or life-threatening complications
such as acute rejection, malignancy and severe opportunistic
infections, but it is also of utmost importance to ameliorate the

many other serious side effects, which increase cardiovascular
risk, decrease renal function, necessitate costly co-medication
or hospitalisations and also have an impact on the quality of
life after successful transplantation.

Despite the fact that renal transplantation is much cheaper
than regular dialysis treatment it is a complex and costly
procedure. Due to the outlined complexities, patients should
remain in life-long specialized posttransplant care. Patients
have not only to take immunosuppressants, but also have to
take numerous drugs for prophylaxis and treatment of pre-
existing and/or concomitant diseases, which are at least in
part aggravated by the immunosuppressants. As a consequence
most patients have to take 5-10 different medications every day
during their entire life. The many drugs and the multiple side
effects of the routinely administered medication are causing
a substantial cost burden. There is not only a medical need
but also a financial necessity to reduce side effects, diagnos-
tic procedures, therapeutic interventions, hospitalisations and
ultimately improve patient safety. This will directly lead to
a better quality of life, cost savings and better allocation of
medical resources.

B. Relevance of Event Modelling

The long-term goal of the research described in this paper
is to improve patient treatment by, e.g., prescribing the most



Fig. 3. TBase R©architecture

effective drugs to the patient my minimizing side effects. Par-
ticularly in focus are drug-drug interaction (DDI) and adverse
drug reactions (ADR) in patients after renal transplantation.
Of high interest are the effects of decisions on key outcome
parameters such as patient and graft survival, renal function
as well as hospitalisations. Lastly, the goal is to implement
a clinical decision support system directly into the electronic
patient file, in order to prevent dangerous DDI, reduce dosing
errors and provide the physician and patient with timely and
adequate information on new prescriptions.

C. TBase R©

In close collaboration with the department of Artificial
Intelligence of the Humboldt University, the Charité - Uni-
versitätsmedizin Berlin developed an electronic patient record
(TBase R©) for renal allograft recipients in 1999. The main idea
was to combine a database for the daily patient care on the
one hand with a validated database for medical research of
the other hand. The combination of daily medical routine with
a research database was the key concept, in order to collect
data of high quality, which are constantly validated by the
user. Due to clinical needs only accurate and reliable data
can be used in daily routine practice. By this means, we have
created a continuous internal validation process and almost
completely avoid missing data. Since 2000 TBase R©is used
in the clinical routine of the Charité and all relevant patient
data is automatically transferred. Due to the increase of the
options of medical diagnostics, the extent of the information
of the clinical data has also increased dramatically. The
elaborate and flexible structure (see Figure 3) of the patient
record and the database made it possible to integrate a large
number of electronic data of several subsystems with different
data structures over the years. Currently TBase R©automatically
integrates essential data from the laboratory, clinical pharma-
cology, nuclear medicine, findings from radiology and admin-
istrative data from the SAP-system of the Charité. TBase R©is
now under patronage of Deutsche Transplantationsgesellschaft
(DTG) and Eurotransplant, Leiden, The Netherlands, and was
implemented in 8 German transplant centres. Figure 4 provides
an impression of the schema of TBase R©.

Fig. 4. View on the TBase R©Schema

V. EXPERIMENTS

A. Setup of the Experiments

The data contains every event that happened to each patient
concerning the kidney failure and all its associated effects,
including prescribed medications, hospitalizations, diagnosis,
laboratory tests and so on. In this paper we will consider events
from year 2005 and onwards due to the improvement of the
data quality from that year. Also, in order to have a better
control of the experiments, we will work with a subset of the
variables available in the dataset. Specifically, we will try to
model three aspects of the patient evolution:

1) Medication prescriptions: which medications are pre-
scribed in each situation.

2) Ordered laboratory tests: which laboratory tests are
ordered in each situation.

3) Laboratory test results: which will be the outcome of
the ordered laboratory tests.

Each entry in the database is labelled with the date in which
the event happened. Our task will consist in predicting all the
events that will happen to a patient on his or her next visit to
the clinic given his past visits, as illustrated in Figure 5.

A very common situation is that the patient gets some
laboratory tests done during the morning, and then based on the
results of those tests, the doctor prescribes some medications
to the patient in the afternoon. Therefore, we can define a
second type of experiment by only considering days that have
both laboratory tests performed and medications prescribed,
and assuming that the laboratory tests always happen before
the medications. Specifically, we will try to predict which will
be the medications prescribed in the afternoon given the results
of the laboratory tests performed in the morning and the events
that happened in the previous visits. This way we can see how
the model behaves in intra-day predictions. Figure 6 shows a
representation of the experiment.

After selecting the subset of the dataset that we will use
and performing the binary encoding, our pre-processed dataset
consists of a table where each row represents one visit to
the clinic. Each of these rows belongs to a patient, has an
associated date and contains all the events that occurred during



Fig. 5. Full visit predictions. We predict all the events that will happen within the next visit given the previous visits.

Fig. 6. Intra-day predictions. We predict the medications that will be prescribed in the afternoon given the laboratory analysis that were performed in the
morning and the previous visits.

Fig. 7. Example of pre-processed data.

that visit in binary format. An example of how our pre-
processed data look like can be found in Figure 7.

B. Hyperparameter Fitting

The model contains several hyperparameters that need
to be optimized, being the most relevant ones the rank r
of the embeddings, the order of the Markov model K, the
number of hidden units in the Neural Network, the learning
rate and the regularization parameters. In order to fit these
hyperparameters, we randomly split the data into three subsets:
60% of the patients were assigned to the training set with
totally about 100 thousand visits, 20% of the patients were
assigned to the validation set and another 20% to the test set,
with approximately 33 thousand visits each. Note that, under
this configuration, we evaluate the performance of the model

by predicting the future events of patients that the model has
never seen before, and therefore increasing the difficulty of the
task.

In Figure 8 we can see how the area under the Precision-
Recall curve on the validation set improves as we increase
the order of the Markov model K. We observe that the
performance stabilizes with an input window of size six. A
6-th order Markov model (without the personalization) has
around 28 thousand inputs (4666 input events multiplied by
6 time steps). The number of outputs of the Neural Network
is 2383, i.e. 2383 events are predicted.

C. Baseline Models

We will compare the performance of our model with
various classic Machine Learning algorithms. Specifically, our
baseline models will be: Naive Bayes classifier, K-nearest
neighbor classifier and Logistic Regression. Additionally, we
will also use what we named “constant predictor”, which
consists in predicting always for each event the occurrence
rate of such event (thus the most common event is given
the highest probability of happening, followed by the second
most common event, and so on). Random Forests were also
considered to be included in this work, but after some trials
they were discarded due to the excessive amount of time they
required to be trained with this dataset, due to the large number
of events to be predicted (nevertheless in the few experiments
we performed with them, they never got to outperform our



Fig. 8. Area Under the Precision Recall Curve improves as we increase
the number of past visits (order of the Markov model K) used to predict the
events that will be observed in the next visit.

proposed models). When comparing the performance between
these models, we report for each model the mean area under
the Precision-Recall curve (AUPRC) and mean area under Re-
ceiver Operating Characteristics curve (AUROC) together with
their associated standard errors after repeating each experiment
ten times with different random splits of the data. We made
sure that these ten random splits were identical for each model.
Most of these baseline models were taken from Scikit-learn
[22], which is the main open source machine learning library
for the Python programming language.

D. Model Training and Evaluation

We trained the proposed models by using mini-batch
Adaptive Gradient Descent (AdaGrad) [23] combined with an
early stopping strategy and using a mini-batch size of 128
samples. Our main goal will be to maximize the area under the
Precision-Recall curve (AUPRC) of our predictions. We chose
this score due to the high sparsity of the data (the density of
ones is around 1%) and because we are mainly interested in
predicting the very small amount of events that will happen,
as opposed to the task of predicting which events will not
be observed. Nevertheless, we will also report the area under
Receiver Operating Characteristics curve (AUROC) because it
is often reported in related scenarios.

The proposed models were implemented in Theano [25],
[24], which is a graph-based computation library, especially
well suited for training Neural Networks. The experiments
were conducted using a Intel(R) Xeon(R) CPU E7-4850 v2
processor with 1TB of RAM and 48 cores at 1.2 Ghz with
2 threads per core. The reported computation times were all
achieved using one thread.

E. Full Visit Predictions

As explained earlier in this section, our first experimental
setting consists in predicting all the events that will happen to
the patients during their next visit to the clinic given the events
that were observed in their previous visits, as it is illustrated
in Figure 5.

Therefore, we predict the events that will happen to a
patient in her or his next visit to the clinic given the events
that were observed in her or his six previous visits to the

clinic, i.e. K = 6. Table I shows the results obtained after
repeating the experiments with ten different random splits of
the data. We can see that the Markov embedding model, which
corresponds to the architecture shown in Figure 1, outperforms
all our baseline models. Our proposed Markov embedding
model obtained an AUPRC score of 0.574, being Logistic
Regression the second best model with an AUPRC score of
0.554. We can also see how the random predictor achieved a
very low AUPRC score due to the high sparsity of the data,
which means that optimizing the AUPRC for this dataset is a
hard task.

In the last column of Table I we also report the time
that it took to train for each model with the best set of
hyperparameters in the first random split. Note that one of
the advantages of the proposed model is that the rank of
the embeddings matrix B can always be reduced in order to
decrease the computational cost required to train the model.
Besides, given constant hyperparameters, the parameters of
the model will increase linearly with the amount of different
event types present in our dataset (e.g. number of medications,
number of diseases...), whereas the parameters of other models
such us the Logistic Regression will grow quadratically in this
situation since for every additional event that we include we
are adding both one input and one output.

TABLE I. SCORES FOR FULL VISIT PREDICTIONS. AUPRC STANDS
FOR AREA UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR

AREA UNDER ROC CURVE.

AUPRC AUROC Time (hours)

Markov Embeddings 0.574 ± 0.0014 0.977 ± 0.0001 6.11
Logistic Regression 0.554 ± 0.0020 0.970 ± 0.0005 4.31
KNN 0.482 ± 0.0012 0.951 ± 0.0002 17.74
Naive Bayes 0.432 ± 0.0019 0.843 ± 0.0015 39.1
Constant predictions 0.350 ± 0.0011 0.964 ± 0.0001 0.001
Random 0.011 ± 0.0001 0.5 -

We repeated the same experiment with the Personalized
Markov Embedding model as represented in Figure 2. The
additional information that we input to the model is composed
of the aggregated history and general information of each
patient. In order to create the aggregated history, for each
sample that we input to the model we create a vector composed
of the sum of all the events that are recorded for that particular
patient until the date of the visit we want to predict. Our
experiments showed that instead of directly using this count of
the data as long term memory, we have two options that work
better. The first option consists in computing the frequency
of appearance of each event by dividing each row of the
memory by the number of visits used to make the count. The
second option consists in normalizing the count between 0
and 1. We will use both the appearance frequency of each
event and the normalized count as our long term memory.
Regarding the background information, it is composed of static
or slow changing variables that we also converted to a binary
format. Specifically, the background information is composed
of the following variables: age, gender, blood type, time from
first dialysis, time from the first time the patient was seen,
weight and primary disease. We can see in Table II how the
personalization of the Markov embedding model improved its
performance. During our experiments, we observed that among
all the variables that compose the additional information used



in this experiment, the inclusion of the frequency of appearance
of each event is the factor that contributed most to the
improvement of the performance of the model. Last row in
II shows the performance of the model when making the
predictions using just the aggregated patient history as input,
as described in Section III-B.

TABLE II. SCORES FOR FULL VISIT PREDICTIONS WITH AND
WITHOUT LONG TERM MEMORY AND BACKGROUND INFORMATION.

AUPRC STANDS FOR AREA UNDER PRECISION-RECALL CURVE. AUROC
STANDS FOR AREA UNDER ROC CURVE.

AUPRC AUROC

Personalized Markov embeddings 0.584 ± 0.0011 0.978 ± 0.0001
Markov embeddings 0.574 ± 0.0014 0.977 ± 0.0001
Patient history embedding 0.487 ± 0.0016 0.974 ± 0.0002

Regarding the architecture of the personalized Markov
embedding model, we also tested the option of having just
one embeddings matrix shared between the long term memory
and the visits within the time window, i.e. A = B, but
we found that the best strategy for our use case is to use
separate embeddings matrix for the long term memory and
the background information as it is shown in Figure 2.

We also tried to initialize the embedding matrices by using
an autoencoder. This brought a speed up of around 30% to the
optimization process of the model. However, this advantage
vanished when we considered both the model optimization
time and the training time of the autoencoder.

F. Intra-day Predictions

Our second experiment type consists in predicting which
medications will be prescribed in the afternoon given the
results of the laboratory tests performed in the morning and
the events that happened in the six previous visits. Figure 6
shows a representation of the experiment. The architecture of
the model will be similar to the one for the Markov embedding
model (Figure 1), but including one more time step in the
input window that will contain the information regarding all
the observed events in the present day. Therefore, for this
experiment the order of the Markov model K will be equal
to seven, instead of six as it was in the case of full visit
predictions. We can see the result of the experiment in Table
III, which shows that also in this setting our proposed model
outperforms the baseline models. The Markov embedding
model for intra-day predictions achieved an AUPRC score of
0.277, which is lower than the score achieved when doing full
visit predictions because the dataset is even more sparse when
we only take into account the medications. Logistic Regression
is again the second best result, and we can also observe how
in this case the performance of the constant predictor is almost
as bad as the random predictor, which means that this is even
a harder task than the full visit predictions.

Another interesting experiment is to compare this result
with the one obtained when doing full visit predictions. That
is, we will measure the performance of predicting medication
prescriptions both considering the laboratory tests performed
in the same day and not considering them. Table IV shows
that incorporating intra-day information actually improves the
performance of the predictions.

TABLE III. SCORES FOR INTRA-DAY PREDICTIONS. AUPRC STANDS
FOR AREA UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR

AREA UNDER ROC CURVE.

AUPRC AUROC

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007
Logistic Regression intra-day 0.238 ± 0.0041 0.916 ± 0.0014
KNN 0.184 ± 0.0027 0.873 ± 0.0002
Naive Bayes intra-day 0.231 ± 0.0013 0.686 ± 0.0020
Constant predictions intra-day 0.008 ± 0.0013 0.564 ± 0.0064
Random intra-day 0.006 ± 0.0064 0.5

TABLE IV. SCORES FOR INTRA-DAY PREDICTIONS WITH AND
WITHOUT CONSIDERING THE PRESENT DAY. AUPRC STANDS FOR AREA

UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR AREA UNDER
ROC CURVE.

AUPRC AUROC

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007
Markov embeddings 0.250 ± 0.0022 0.931 ± 0.0006

Besides, as we did with full visit predictions, we will
make intra-day predictions incorporating a long term memory
and background information of the patients. Table V shows
how we improved the performance of the predictions with the
personalized Markov embedding model.

TABLE V. SCORES FOR INTRA-DAY PREDICTIONS WITH AND
WITHOUT MEMORY AND BACKGROUND INFORMATION. AUPRC STANDS

FOR AREA UNDER PRECISION-RECALL CURVE. AUROC STANDS FOR
AREA UNDER ROC CURVE.

AUPRC AUROC

Personalized Markov embeddings
intra-day 0.289 ± 0.0027 0.938 ± 0.0005

Markov embeddings intra-day 0.277 ± 0.0026 0.935 ± 0.0007

G. Sensitivity Analysis

We performed a sensitivity analysis in order to evaluate
how the model reacts to changes in the inputs. We performed
this analysis using the medication named Tacrolimus, because
it is one of the main immunosuppressants used in our database
but it is not as frequent as other immunosuppressants such as
Cyclosporin.

When doing the intra-day predictions as illustrated in
Figure 6, and if we look exclusively at the score obtained
in the prediction of Tacrolimus prescription (i.e. predicting
whether or not Tacrolimus prescription will be observed next),
we obtain an AUPRC score of 0.629, whereas the random
prediction score 0.160. The sensitivity analysis will consist in
suppressing one by one the events in the input and check how
the absence of such input affects to the AUPRC score.

After performing this analysis we rank our input variables
according to how much the AUPRC score of predicting
Tacrolimus prescription was degraded when suppressing each
of them. Even though this is a simplified analysis since we
do not analyze how each variable influences the output when
combined with other variables, we can infer that the higher a
variable is ranked, the higher is the importance that has been
assigned to it by our model for this task.



Most of the prescriptions of Tacrolimus present in our
database correspond to an increase or decrease of the amount
of medication that a patient is taking. The dosage of Tacrolimus
that a patient takes has to be adjusted when certain criteria are
met. The factors that the physicians take into account to decide
whether or not the dosage of Tacrolimus has to be changed
are the amount of Tacrolimus in blood and the excess of
Creatinine in blood. Out of almost 5000 events, the laboratory
results for “Low Tacrolimus”, “High Tacrolimus” and “Normal
Tacrolimus” occupy the positions second, third and fourth
respectively in our sensitivity ranking. The laboratory result of
“High Creatinine” occupies the position number 27. Therefore
we can see how the model has learnt to predict the prescription
of Tacrolimus giving a very high importance to the same
observations that the physicians use. Moreover, other factors
that are also correlated with the prescription of Tacrolimus are
also present in the top 10 entries of the sensitivity ranking. For
example in the position number 8 we find “High C-reactive
protein”, which is an infection marker that, when observed,
indicates that the Tacrolimus dosage has to be reduced. Also
in position 10 we find “High Glucose” which is a side effect of
Tacrolimus that often leads to the reduction of the Tacrolimus
dosage.

VI. FUTURE WORK

We will try to improve the model by introducing other
elements that proved to be successful in deep Neural Networks
such as drop out regularization and temporal convolutional lay-
ers. We will also explore the possibility of including additional
information in the model such as the size of the time gap
between the visits.

Besides, [19] showed that Recurrent Neural Networks pro-
vide the best performance in the task of language modelling.
Therefore we will explore such models for our use case.

Regarding the data, we will extend our model to predict
more event types within this dataset, and we will also apply
our model to other datasets and use cases.

Our project also serves to encourage the TBase system to
collect more information that would be valuable for decision
support, such as patient symptoms and a precise time stamp
for each event. Future work will also include the incorporation
of textual information as present in pathology reports and
information from molecular tests, e.g., genetics. Finally, we
plan to make more extensive use of background ontologies
which for example can be used to map different medications
with identical active components to a common representation.

VII. CONCLUSION

We presented a model capable of predicting clinical events
that is scalable and provides an acceptable performance for
our current use case, which consist of modelling a subset of
the variables that compose the evolution of the patients in our
dataset.

Our work already lead to new requirements for improving
the medical documentation. For example a detailed documen-
tation of the patients symptoms would be a very valuable
information for improving the model.

We showed how the proposed model performed better than
our baseline models both making full visit predictions and
intra-day predictions. We also showed how to integrate both
the background information of each patient and a long term
memory in order to improve the performance of the model.

Our model currently predicts common practice in a clinic
which can already be useful in many ways, for example in
alerting staff in case of unusual decisions. Of course the ulti-
mate goal of a clinical decision support system should be not
just replicating the decisions that are most often taken by the
physicians in each situation, but to provide recommendations
that lead to the best outcome possible. The basis for achieving
this goal is a predictive model as presented in this paper.
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